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ABSTRACT 
___________________________ 

 
Thorough knowledge of root system architecture and 
functioning is essential for a better understanding of the 
impact of plants on climate change, for plant 
phenotyping or for designing more sustainable 
agro-ecosystems. Recently, electrical imaging of root 
zone soil has been gaining wide attention among 
agronomists and soil scientists (Zhao et al. 2019) 
because of its sensitivity to soil moisture. However, a 
quantitative understanding of electrical signatures of 
roots in electrical imaging is still somewhat missing in 
the scientific literature. For example, it is unclear how 
roots impact petrophysical relation and if electrical 
measurements contain geometrical information of root 
architectures. It is also unclear if the ERT method is 
sensitive enough to differentiate depletion zones of 
similar plant types but belonging to different species 
for phenotyping applications.  

The general objective of this Ph.D. thesis is to quantify 
the direct and indirect impact of plant roots in soil 
electrical signature.  Root affects the soil-plant system 
directly through its architecture but also indirectly via 
soil water depletion by uptake.  

The first part of the thesis (Chapters 3 and 4) deals with 
understanding the direct impact of roots in small scale 
rhizotron and pot via process-based numerical models. 
We quantify the direct impact of roots while 
incorporating both direct (root explicit electrical 
properties) and indirect (root water uptake patterns) in 
the forward numerical model. To date this is the closest 
to reality, a numerical model can achieve in 
understanding electrical signatures of root systems in 
soils. We also prove that electrical response if 
measured in magnitude and phase components, 
magnitude part represents mainly indirect impact (root 
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water uptake) while the phase part represents mainly 
direct impact (root architecture) and both magnitude 
and phase part contain root geometrical information. 

The second part of the thesis deals with quantifying the 
indirect impact of water, i.e., soil water depletion in 
field-scale ERT experiments. We propose a new 
methodology where we use a numerical model to 
interpret field data. The model informed us if the 
changes we observe in the ERT experiment was due to 
plants or an artifact. This allowed us to quantify even 
the slightest changes in water depletion from different 
plants. Finally, we show that it is possible to phenotype 
similar plants belonging to different species at field 
scale using the ERT method.  
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                      architecture 

 Fractal dimension 𝐹𝐷
 Number of boxes in box-counting method 𝑁

s Box size in box-counting method 
 Front view of the root architecture 𝐹𝐷

𝑥

 Lateral view of the root architecture 𝐹𝐷
𝑦

 Top view of the root architecture 𝐹𝐷
𝑧

 Geometrical anisotropic factor 𝐺𝐴𝐹
,  &  Angles between a scan line and root  γ

𝑋
γ

𝑌
γ

𝑍

                      segments in different directions 
 
 

 Summation on the number of  ∑  

                      intersections between scan lines and root  
                      segments  

,  &  Length of scan lines in X, Y and Z  𝐿
𝑋

𝐿
𝑌

𝐿
𝑍

                      directions 
          Magnitude and phase of plate electrodes’  ξ & δφ

                      effective anisotropic factor  
       Heterogeneity in electrical conductivity in  φ

𝑋
 & φ

𝑍

                      two principal directions 
               Distance from root collar 𝑑𝑟𝑐

                 Test point to compute nearest neighbor  𝑝0
                      points 

 Nearest neighbor points 𝑝1,  𝑝2 & 𝑝3
 Optimal integer value 𝑘
 Represents day 25.2 of root uptake  𝑡1
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                      simulation 
 Represents day 31 of root uptake  𝑡2

                      simulation 
 
Chapter 5: 
 
Ap, Bt & C Six different soil horizons 
d́                    Data vector or log of measured apparent  
                      resistivities from real/numerical  
                      experiments 
f(ḿ)               Gauss-Newton scheme Model 

                 Data misfit between the measured d́ and  ϕ
𝑑

                      the data estimated by f(ḿ) down- 
                      weighted by  𝐸

𝑚𝑜𝑑𝑒𝑙

 Regularization parameter in ERT  λ
                      inversion 

 Model misfit ϕ
𝑚

ḿ0 Homogeneous starting model vector 
 

 First-order smoothness regularization  𝑊
                      matrix 

                 The ratio by which   is reduced for  𝑍
𝑤

λ

                      vertical contrast 

 Chi-square value in ERT inversion χ2

 Length of the data vector 𝑁
 Soil water content derived from TDR θ

𝑇𝐷𝑅

 Electrical resistivity derived from TDR ρ
𝑇𝐷𝑅

   Fitting parameters 𝑎 & 𝑏
 Residual water content θ𝑟

 Electrical conductivity using TDR σ
𝑇𝐷𝑅

                 2-D time difference of resistivity and  δρ
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                      water content 
 Water content between t1 and t3 δθ

,    Mean parameters represent depth at  µ
𝑍,δρ

µ
𝑍,δθ

                      which depletion is largest 
,    Extent of the depletion σ

𝑍,δρ
σ

𝑍,δθ

                 Change of log resistivity between t1 and  δ𝑝
                      t3 
                 Depletion zone σ

𝑍

                 Normal resistance 𝑅
𝑛

                 Reciprocal resistance 𝑅
𝑟

                Fractional error 𝐹𝐸
          Arithmetic mean of R 𝑅

𝑚𝑒𝑎𝑛

E                  Measurement error in ERT 
         Linear model describing data-error in ERT 𝐸

𝑚𝑜𝑑𝑒𝑙

                  Magnitude of the resistance 𝑅
                  Absolute error in ERT inversion 𝑎
                  Relative error in ERT inversion 𝑏
                Saturated water content θ𝑠
                Residual water content θ𝑟

(  ,  ,         Shape parameters in Van Genuchten-        𝑎 𝑛
 &  )       Mualem equations 𝑚 λ

 
               Saturated soil hydraulic conductivity 𝐾𝑠

         2-D distributions of water content at t3,  θ 𝑡3( ),
      t2 and θ 𝑡2( ) &

         t1 θ (𝑡1)
         2-D distributions of electrical resistivity ρ 𝑡3( ),

      at t3, t2 and  ρ 𝑡2( ) &
          t1  ρ(𝑡1)
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Nqraw   Number of quadrupoles in raw data 
Nqf   Filtered data as a function of block 
t1 to t4  Time stamps used for measurements 

  Root density under drought condition 𝑟𝑛𝑑
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1 INTRODUCTION    
      

1.1 Context 
 

Crops are the main source of food, fiber, and biofuel 
and source of economic income for many countries 
employing a large number of people in the world 
(Chowdhury 2011). The increasing demand for 
agricultural products due to population growth and 
rapid urbanization of the developing countries under 
changing environments and climate represents an 
immense challenge for the next decades (Wheeler and 
Von Braun 2013).  

Figure 1.1 shows the relation between world 
population, arable land, irrigation, and fertilizer usage. 
We are able to keep up the pace of cereal production 
with population growth mainly because of mainly three 
reasons: 1) genetic modification, 2) increased usage of 
fertilizer, and 3) equipping land with irrigation (Harold 
2015).  

Currently, we are facing challenges in these three key 
areas: 

1. The green revolution that improved the productivity 
of rice and wheat was mainly the result of genetic 
engineering that made plants more responsive to 
applied fertilizers (Lynch 2007). To define a 
Genotype, it is a DNA code that genetically defines 
a plant species. The interaction of several genes and 
the environment of the plant life leads to physically 
measurable traits in the plant such as growth rate, 
yield, root density, leaf counts, biomass, rate of 
photosynthesis, and adaptation to stress (Costa et 
al. 2019). Such traits are termed as phenotypes. 
Current technology allows rapid analysis of 
genotypes or DNA sequencing in plants but to 
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understand the impact of a specific genotype, 
corresponding phenotype data is essential (Yang et 
al. 2014). However, currently, phenotyping in crops 
is not as rapid, systematic, and high throughput as 
genotyping. Only by analysing phenotyping and 
genotyping data simultaneously, we can completely 
understand the behavior of a plant. This requires 
high-throughput phenotyping methods.  

 
2. Although fertilizers have improved food 

productivity in the past decades, it has limitations. 
Only 50% of applied nitrogen fertilizers and 5% 
percent of phosphorous fertilizer are used by the 
crops (Lynch and Brown 2012) and the unused 
fertilizer leads to environmental damage and soil 
degradation (Sekhon 1995).  
 

3. Thirdly, only 23% of arable land in the world is 
equipped for irrigation and is increasing rapidly 
(Harold 2015). Today, agriculture accounts for 70% 
of the usage of freshwater in the world leading to 
increasing global scarcity of freshwater (Faurès et 
al. 2002). Further, the agricultural productivity of 
many countries is climate driven and relies heavily 
on events like monsoon which has recently become 
erratic due to global warming (Gadgil and Kumar 
2006). Droughts are increasing around the world 
due to an increase in evapotranspiration in plants 
due to surface heating caused by human-induced 
climate change or CO2 emissions (Trenberth et al. 
2014).  

Therefore, we urgently need better agricultural 
practices to improve food security for the growing 
world population while also conserving soil, water, and 
biodiversity resources. This requires adopting new 
agricultural practices that involve finance and policy 
sectors such as tackling food price volatility (Lipper et 
al. 2014) to implementation of more sustainable crop 
input management (irrigation, fertilizers, etc.) and the 
use of more resilient combinations of plant genotypes.  
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With arable land and freshwater availability reaching 
its planetary limits, understanding plant-soil 
interactions become a very important scientific step to 
improve agricultural practices (Sposito 2013). 

 

 

Figure 1.1: The relation between world population and 
arable land, cereal yield, fertilizer use, and irrigated area. 
The figure is taken from (Harold 2015) who originally 
adapted it from (Evans et al. 1998). 
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1.1.1 Importance of studying soil-root interactions 
 

The root system forms the hidden half of a plant’s body 
that provides anchorage to the remaining upper part of 
the plant and helps plants to absorb water and nutrients 
from the soil. Root systems have architecturally very 
complex and variable structures, which develop as a 
function of their genetic information and their 
environment. 

On the other hand, soil medium is also a complex and 
heterogeneous system, whose structure, composition, 
and water and nutrient content vary in space and time. 
Plants affect soil heterogeneity through many processes 
such as growth, exudation, microbial activity, and 
water and nutrient uptake, amongst others. At the 
interface between soil and root, the rhizosphere is a 
hotspot of biodiversity and the location of important 
exchanges between soil and roots. 

There is an established link between crop yields and 
root system performance. Studies have indicated that 
crop yield or biomass production in maize depended on 
root system architecture (Lynch 2007; Hammer et al. 
2009). For example, (Wasson et al. 2012) demonstrated 
that wheat genotypes with a denser root system in 
deeper soil layers produce higher yields.  In addition, 
studies find that shallow root growth is efficient in 
acquiring nutrients like phosphorous where water 
scarcity is not a problem while deep vertical root 
growth is an important subject to water deficit (Lynch 
and Brown 2008). 

Desired genotype characteristics such as drought 
tolerance can be achieved by engineering a deeper root 
system by cloning or other crop breeding methods (Uga 
et al. 2013). However, a large root system also means 
higher metabolic costs for root growth (Lynch 2015), 
which can sometimes reduce yield (above-ground 
biomass) as observed in Maize under drought (Bruce et 
al. 2002). Therefore, it has been shown that the 
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efficiency of a certain genotype critically depends on 
other root system characteristics (or traits or phenes). 
(Leitner et al. 2014) for instance, it showed that root 
hydraulic conductance could improve water uptake 
efficiency more than deep roots under certain 
environments. 

Monitoring evolution of root biomass, root 
architecture, and root water uptake dynamics in 
cropped fields under varying climatic conditions is 
critical information needed to understand drought 
tolerance, optimization of irrigation strategies, root 
phenotyping, plant breeding and to develop reliable 
plant-soil models. However, such monitoring is still a 
challenging task due to the opaque nature of soil 
(Cairns et al. 2012). 

Hence, in the context of understanding soil-plant 
interactions, we need efficient measurement techniques 
to monitor root growth, root activity, and soil water 
fluxes. 

1.1.2 Need for efficient root imaging methods 
 

Traditional methods used to investigate soil-root zone 
includes soil excavation and rhizotubes, which are 
inherently intrusive interferes with the natural state of 
the system. Rhizotubes allow visualizing root arrival 
rates at a given depth (Cai et al. 2016) but can hardly 
be installed in very large fields and provide only a 
partial view of the system. Large containers are also 
tested (Svane et al. 2019) but cannot represent the 
natural soil heterogeneity. 

Other minimally invasive techniques include the use of 
point sensors such as time domain reflectometry (TDR) 
probes, electrical conductivity sensors (σ), soil 
tensiometers, capacitance probes that measure variables 
of interests such as soil moisture and soil water 
potential at discrete locations. 
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Smart irrigation systems currently make use of signal 
inputs from soil moisture and evapotranspiration 
sensors to manage the irrigation sprinklers (McCready 
et al. 2009). These systems either use point sensors 
mounted on the surface of the soil (Iggulden et al. 
1989) or network of sensors (Morais et al. 2005). 
However, they do not accurately capture the temporal 
and spatial variability of root-zone. It is very important 
to include the complexity of soil-root moisture patterns 
in these smart irrigation systems if it has to be accurate 
and robust enough.  

On the other hand, remote sensing-based approaches 
that make use of satellite imaging to measure variables 
such as soil water content over a large area of tens of 
km lack the resolution at plant scale. Techniques that 
offer high-resolution spatial and temporal variability 
such as light transmission imaging needs specialized 
soil medium and transparent rhizotron (Garrigues et al. 
2006) and hence cannot be applied in natural soil 
conditions. 

1.1.3 Geo-electric methods in soil-root studies 
 

Geophysical methods offer the ability to infer 
properties and structures of the pedosphere as well as 
flow and transport processes at various spatial scales 
ranging from the single root to the field scale 
(Cimpoiaşu et al. 2020). Geophysical properties can be 
related to soil state variables (e.g. soil moisture, salt 
concentration), soil properties (e.g. clay content, cation 
exchange capacity), and root properties (e.g. root mass, 
root surface area) (Vanderborght et al. 2013). The 
application of geophysical techniques in an agricultural 
context to study how agricultural production is affected 
by environmental variables (e.g. water availability, 
salinity) and agricultural management (e.g. impact of 
fertilizer and irrigation application) as well as to study 
fundamental soil-root interactions is now referred to as 
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agrogeophysics (Vereecken et al. 2006; Allred et al. 
2008).  

Various applications of geophysical methods in 
agriculture are reported in the literature ranging from 
mapping of compaction or determination of plow-pan 
depth (Besson et al. 2004; Lu et al. 2004) to irrigation 
efficiency monitoring (Tresoldi et al. 2019). Soil 
mapping for precision agriculture and crop modeling 
has been realized using on-the-go electrical resistivity 
tomography (Andrenelli et al. 2013) and 
Ground-penetrating radar (Huisman et al. 2002).  

These methods are continuously evolving from the past 
few decades to monitor partially the soil-root systems 
and their functioning, which include: ground 
penetrating radar (GPR), electrical resistivity 
tomography (ERT), electrical impedance tomography 
(EIT), time-domain reflectometry (TDR), electrical 
capacitance tomography and amongst others, each 
method offering its advantages and disadvantages. 
They offer promising features and rely on the fact that 
the electrical properties such as electrical 
resistivity/impedance and dielectric permittivity are 
very sensitive to hydrological parameters of interest 
such as soil water content (Michot et al. 2003) and 
solute concentration (Kemna et al. 2002). For example, 
the electrical conductivity (EC) map of soil obtained 
from geo-electric methods in a cropped field is 
sometimes used as a proxy to measure crop yields 
(Grisso et al. 2009). Among the geo-electrical methods 
discussed above, ERT/EIT method offers several 
advantages such as being cost-effective and easier to 
install in fields and is the method of interest in this 
thesis.  

1.1.4 Electrical Resistivity/Impedance Tomography 
 

Electrical resistivity tomography (ERT), also called DC 
resistivity imaging (DCR) or Electrical Resistivity 
Imaging (ERI), determines the distribution of electrical 
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resistivity in the subsurface by performing a set of 
resistance measurements on the ground surface and/or 
in boreholes. Electrical Impedance Tomography (EIT) 
is similar to ERT in terms of set-up and measurement 
but using a frequency-dependent current injection and 
inverting both the real and complex parts of the 
impedance at different frequencies. 

In the context of monitoring soil water content, ERT 
has been widely applied in field-scale (Beff et al. 2013; 
Garré et al. 2011; Michot et al. 2003, 2016; Whalley et 
al. 2017; Zhou et al. 2001). Michot et al. (2003) studied 
the soil water content (SWC) in irrigated maize 
cropland using ERT and showed that the changes in 
SWC had an effect on measured electrical conductivity 
data and Beff et al. (2013) used TDR and ERT to 
quantitatively measure soil water distribution in a 
maize field and found that both of these techniques 
yield a similar result. More recently, ERT-estimated 
water content was used for phenotyping root systems at 
field scale (Whalley et al. 2017). The authors 
monitored changes in σ of the soil root zone in drying 
conditions at different soil depths, which acted as a 
proxy for root activity. 

Other studies used ERT or EIT related techniques to 
image root biomass or root structures. Zenone et al. 
(2008) used ERT and GPR in conjunction to detect 
poplar roots and pine roots and found that ERT is 
capable of detecting tree roots independent of the root 
directional orientation whereas GPR could detect only 
roots that are perpendicular to radar profile. They 
suggested that the combination of these methods (GPR 
and ERT) could more accurately predict root biomass 
non-invasively. Amato et al. (2008) used resistivity 
imaging to map root biomass and showed a high 
correlation between measured resistivity and root mass 
density. In the work of Weigand and Kemna (2017), the 
spectral signatures of complex σ of rapeseed roots 
grown in Rhizotron were investigated using EIT. They 
found that the presence of roots in soil significantly 
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altered the complex σ spectra and thus suggesting the 
possible use of EIT in root imaging. The electrical 
polarization property of roots was investigated in the 
context of the imaging root system (Mary et al. 2016, 
2017). However, using EIT, they could detect only the 
shallow roots and not the roots located deeper in the 
soil. In addition, there existed some anomalies in 
electrical phase distribution, which they could not 
explain. More recently, Mary et al. (2018) found that 
by injecting electric current directly into the stem as 
opposed to the soil, some information about the root 
architecture could be inferred. 

 

1.2 Problem Statement 
 

1.2.1 Root influence on petrophysical relation 
 

The performance of several smart agricultural systems 
depends on the accuracy of estimated soil water 
content. Precise and accurate measurements of SWC 
are also important to understand physiological 
processes, control automated irrigation systems, and 
develop new crop models for better crop management 
(Jones 2006). Despite the success in using geo-electric 
methods such as ERT and EIT in estimating soil water 
content in agricultural field (Samouëlian et al. 2005; 
Srayeddin and Doussan 2009; Garré et al. 2011; Beff et 
al. 2013; Michot et al. 2016), the possibility of root 
segments contaminating ERT measurements remains 
mostly unexplored.  

The petrophysical relation is commonly the relation 
between the bulk electrical conductivity of the soil 
medium and the soil water content. To transform the 
bulk electrical conductivity of soil obtained by 
geophysical measurements (André et al. 2012; Zenone 
et al. 2008) into soil water content, we use functions 
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called petrophysical models. These models relate 
with other properties of soil as the soil water  σ

𝑏𝑢𝑙𝑘 
 

content (see section 2.5.1). 

The bulk electrical conductivity of soil, here onwards 
denoted by , depends on several factors, which  σ

𝑏𝑢𝑙𝑘
include the porosity of soil particles, the electrical 
conductivity of soil liquid phase, temperature, soil 
compaction or bulk density, organic carbon content, 
and soil water content (Corwin and Lesch 2005). Also, 
the presence of roots affects the bulk electrical 
conductivity of the soil (Werban et al. 2008; Ni et al. 
2018). Yet, in some lysimeter experiments, we see that 
petrophysical function is time-invariant, despite 
ongoing root growth (Garré et al. 2011). Beff et al. 
(2013) could not see the impact of roots in terms of 
petrophysical relations for Maize species as opposed to 
Werban et al. (2008). Thus, it is not clear how 
vegetation affects petrophysical relations. In some 
studies, the presence of roots tends to decrease the 
electrical resistivity in the petrophysical curve (Werban 
et al. 2008; Mary et al. 2016; Ni et al. 2018) while 
others observed an increasing trend between ERT 
derived electrical resistivity and root biomass as shown 
in Figure 1.2 (Amato et al. 2008, 2009; Rossi et al. 
2011; Paglis 2013). This increasing trend could be due 
to increased root water uptake in root dense regions 
resulting in drying up of the soil and thus increasing the 
electrical resistivity. Hence, along with root-specific 
electrical property, the indirect impact of roots such as 
root water uptake and solute uptake also affects soil 
electrical property and petrophysical relations.  

Figure 1.1 shows different petrophysical relations in 
vegetated soils with different root density and scales. 
Michot et al. (2016) also observed different 
petrophysical relation for rooted and bare soil 
(although we did not show their data in Fig. 1.1). 
Werban et al. (2008) in their concluding remarks, 
suggests that using Archie’s law with only three phases 
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(sand particle, water, and air) is not suitable for the root 
zone, which requires a fourth phase (root segments).  

 

Figure 1.2: a) Electrical resistivity (ρ) versus water 
saturation from Figure 3 of Werban et al. (2008). b) 
Electrical resistivity (ρ) versus percentage volumetric water 
content  (WC) from Figure 2 and Figure 5 of Ni et al. 
(2018). c) Frequency Averaged resistivity magnitude (|ρ|) as 
a function of percentage volumetric water content. 

 

Figure 1.3: Root mass density (RMD) versus electrical 
resistivity (ρ) of various plant/tree species from different 
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works of literature as described in the legend. Digitization of 
pictorial data done using WebPlotDigitizer (Rohatgi 2011). 

1.2.2 Imaging root systems characteristics 
 

How roots invade the soil and react to soil water spatial 
distribution, how the root hydraulic properties are 
distributed between root orders and as a function of age 
is plant genotype characteristics that can be targeted by 
breeders to optimize plant performances under adverse 
conditions.  

However, the ability to easily, accurately, and 
extensively characterize root phenotypes even at pot 
scale is a major challenge in the field of root biology 
(Meister et al. 2014). There are various bottlenecks in 
the root phenotyping procedure (Atkinson et al. 2019). 
One such bottleneck is high throughput imaging or 
phenotyping techniques available for root systems 
(Atkinson et al. 2019). While there are many studies 
focusing on high-throughput imaging of the 
above-ground part (Fahlgren et al. 2015; Bai et al. 
2016; Singh et al. 2016), the studies on root systems 
are relatively limited. 

Geo-physical techniques such as the electrical 
resistivity tomography (ERT) and Electrical Impedance 
Tomography (in principle similar to ERT) offer 
promising features such as being cost-effective and 
high throughput. Although there are few recent studies 
in using these geophysical techniques for non-invasive 
root phenotyping, it is not yet clear that if electrical 
properties of a soil-root domain that can be measured 
from Geophysical techniques contains information on 
root architectural parameters such as its extent and 
length (Whalley et al. 2017; Corona-Lopez et al. 2019; 
Peruzzo et al. 2020).  

The strength of electrical signatures from roots in 
geophysical methods depends on electrical 
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conductivity contrast between soil matrix and root 
segments. Investigating the effect of roots on electrical 
conductivity is however difficult as pointed out by 
Rossi et al. (2011) due to complex soil-root interaction. 
For example, in the study of Zenone et al. (2008), 
poplar roots could be discriminated in loam but pine 
roots could not be discriminated in the sand. Rossi et 
al. (2011) could correlate bulk electrical conductivity 
with root mass density (RMD) but not with root length 
density (RLD) for orchard roots. They could relate bulk 
electrical conductivity with root mass density only for a 
certain range of conductivities but not for all the range. 
Further, it is also not clear how the root architecture or 
root segment connectivity and its geometrical 
properties such as root volume, root surface area, and 
root radius play a role in affecting electric current flow. 
Mary et al. (2016) conclude that success in accurately 
imaging root systems using EIT is limited by 
incomplete understandings of how soil-root interaction 
such as root water uptake influences the EIT 
measurements.  

Al Hagrey and Petersen (2011) studied the impact of 
roots on ERT imaging by using an adaptive root growth 
numerical model (Wilderotter 2003), but however, they 
ignored the inherent heterogeneity of electrical 
conductivity that can exist within a soil-root 
continuum. They assumed that electrical conductivity 
for conductive root to be 0.05 S/m, resistive root to be 
0.002 S/m, which were contained in a homogeneous 
soil with the conductivity of 0.01 S/m. While 
homogeneous simplifications may explain certain 
experimental aspects, such a simplified model cannot 
quantify the impact of roots hidden in ERT 
measurements. As mentioned earlier, we should 
examine/include heterogeneity or variability of 
sub-surface properties along with root electrical 
properties into the model for such purposes. 
Unfortunately, there are no detailed numerical studies 
aiming to understand the root impact on bulk electrical 
properties or ERT measurements, which includes the 
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complexity of real-world variabilities such as plant 
transpiration, root water uptake, and electrical 
conductivity heterogeneity, despite increasing usage of 
ERT in agronomy.  

Such a numerical study would advance our 
understanding to develop a petrophysical correction 
term for root impact in ERT measurements. 
Understanding of electrical current flow in the soil-root 
system would also help us in the context of 
non-invasive imaging of root systems via ERT method.  

1.2.3 Root Phenotyping  
 

Currently, root phenotyping is typically performed on 
young plants grown aeroponics, or in small containers 
filled with non-natural substrates. Their ability to deal 
with the heterogeneous environment is therefore 
impossible to assess. Recognizing the limiting interest 
of root phenotyping in pots (Passioura 2002), Passioura 
(2012) suggested that field phenotyping is needed to 
ensure that plant genotypes are able to deal with the 
natural temporal and spatial variability of the 
environment. 

High-resolution root-zone soil moisture monitoring 
using ERT can reveal the differences in water depletion 
of different genotypes and species under varying 
climatic conditions. For example, ERT imaging 
conducted on a transition zone from forest to grassland 
showed that soil moisture dynamics at different seasons 
were significantly different for forest and grassland 
(Jayawickreme et al. 2008). Garré et al. (2013) showed 
that in an inter-cropped field, the ERT method could 
distinguish the depth of soil water depletion for 
different plant species and also differentiate fertilized 
and unfertilized treatments. Although there are very 
few field-scale studies using ERT/EIT to phenotype 
roots, additional experiments at different conditions 
and environments are needed to establish 
Geo-electrical methods as a reliable phenotyping tool.  
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1.3 Objectives 
 

The general objective of this Ph.D. thesis is to quantify 
the direct and indirect impact of plant roots in soil 
electrical signature.  Root affects the soil-plant system 
directly through its architecture but also indirectly via 
soil water depletion by uptake.  Two main questions 
will be tackled in this Ph.D.: (1) how do roots impact 
pedometrical relations and (2) is it possible to 
determine root system properties with Geo-electrical 
measurements such as ERT.   

The general objective will be addressed through 4 
sub-objectives (see flowchart in Fig. 1.3): 

1. Reviewing the electrical properties of soil-root 
continuum and state of the art Geophysical 
methods:  

 
Some studies have speculated that electrical 
conductivity contrast between soil matrix and root 
segments determines the ability of root segments to 
affect electrical measurements (Rossi et al. 2011; 
Vanderborght et al. 2013). Hence, our first 
objective is to review the electrical properties 
(including polarization) of root segments and soil 
matrix. This will allow us to draw a conclusion on 
conditions under which root segments and soil 
traits could be discriminated via state-of-the-art 
geophysical methods.  

 
2. Process-based virtual rhizotron experiments to 

investigate the impact of roots on ERT derived 
soil water content and petrophysical relations:  

 
The second objective of this thesis is to investigate 
how a transpiring, growing single plant might affect 
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the ERT estimate of soil water content and 
petrophysical relation. For achieving this objective, 
we chose to work with a rhizotron geometry, which 
is a thin container (typically around 1 cm x 50 cm x 
50 cm), filled up with a growing substrate in which 
plant roots develop. An electrically isolated 
soil-root system of a rhizotron offers simplicity yet 
elegant environment to understand the impact of 
roots on ERT derived water content. We 
hypothesize that the electrical conductivity contrast 
between the plant root system and the soil 
surrounding the roots (impacted by root, soil 
properties, and plant hydraulic boundary 
conditions) together with the number of roots will 
affect the ERT measurements and therefore 
ERT-derived quantities. Quantification of root 
impact will be then investigated with the help of 
development of a coupled numerical model that can 
stimulate root growth and development (including 
changes of root electrical properties with aging), 
water flow in soil and root systems, as well as 
electrical transfer in the soil-root continuum in a 
rhizotron geometry.  

 
3. Relating structural properties of a root system to 

effective electrical properties of a soil-root 
continuum:  

 

We hypothesize that electrical measurements in the 
soil root continuum contain information on root 
system topology and/or architecture. We base our 
hypothesize on the fact that the root system having 
different electrical and hydraulic properties than 
soil, should affect effective electrical properties of a 
soil-root continuum in a systematic way either by 
its direct presence or via indirect water uptake that 
is somehow related to root architecture. Here, we 
investigate whether the electrical properties of the 
soil-root system have any relation to root system 
geometrical features and to what extent. This 
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assessment will answer the question: can we use 
electrical measurements to phenotype root systems 
in agricultural fields and under what conditions? To 
do so, developing different indices characterizing 
the geometry of the root system network and 
electrical properties of the soil-root continuum and 
testing the relationship between them using 
numerical modeling will be the third objective of 
this thesis. 

 
4. Phenotyping root systems at field scale using 

ERT  

Crop yields might be dramatically affected by 
drought stress. It is therefore important to 
understand how different plants react to a limited 
amount of soil water and high evaporative demand. 
Non-invasive phenotyping methods are essential to 
identify drought-tolerant plants. We hypothesize 
that under drought conditions, Electrical Resistivity 
Tomography (ERT) should be able to quantify and 
distinguish the plants in terms of depth and quantity 
of root water uptake and thus be used for root 
phenotyping. Therefore, the objective of this 
chapter is to test the ability of ERT in the field to 
acquire information on root water uptake by 
different forbs and grass species. In particular, we 
are interested in understanding root water uptake 
under drought stress. 
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Figure 1.4: Flowchart of the outline for the thesis chapters 
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1.4 Outline of the thesis 
 

The structure of the remaining part of this thesis into 
different chapters is as follows: 

● Chapter 2 discusses the electrical properties of the 
soil-root continuum. To measure root electrical 
properties, we designed specific experiments on 
real plants. In addition, we also provide a review of 
various petrophysical relations from literature used 
to convert electrical resistivity to soil water content 
for water content estimation purposes. We also 
describe the measurement procedure adopted to 
characterize the electrical properties of the root 
segment. The measured quantities are then used to 
parameterize the process-based model described in 
chapter 3.  

● Chapter 3 presents the results of the process-based 
rhizotron model. We simulate virtual ERT 
experiments and assess the influence of root 
segments in a thin rhizotron geometry.  

● Chapter 4 explores the possibility to use electrical 
measurements for deducing root architectural 
features and thus for pot-scale phenotyping. Here, 
we extend the process based rhizotron model to 
different plant species having varying root 
architectures and examine the relation between the 
geometry of root network and electrical properties. 

● Chapters 5 and 6 deal with actual ERT 
experiments on multi-species grassland. We discuss 
the filtering process and data handling involved in 
ERT inversion. Then we examine the root 
phenotyping information contained in the electrical 
resistivity information derived from ERT 
measurements.  

● Chapter 7 concludes this thesis with remarks and 
future perspectives.  
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2 GEOPHYSICAL 
MONITORING  
METHODS FOR 
SOIL-ROOT 
CONTINUUM 

 

Chapter adapted from: 

Ehosioke, S., F. Nguyen, S. Rao, T. Kremer, E. 
Placencia-Gomez, J.A. Huisman, M. Javaux, and S. 
Garré, Sensing the electrical properties of roots; a 
review, Vadose Zone Journal, Submitted 2020. 

___________________________ 
 

ABSTRACT 
Thorough knowledge of root system architecture and 
functioning is essential for a better understanding of the 
impact of plants on climate change, for plant 
phenotyping or for designing more sustainable 
agro-ecosystems. Its characterization is challenging due 
to its inaccessibility, the heterogeneity of the 
pedosphere, and the complex biogeochemical processes 
in the root zone. Electrical methods address some of 
these limitations by inferring properties and structures 
of the pedosphere as well as flow and transport 
processes non-invasively at various spatial scales. In 
this review paper, we highlight the applications of 
low-frequency electrical geophysical methods to root 
biomass investigation reported by plant, soil, and 
geophysical scientific communities.  
Conduction and polarization processes occur in and 
around roots, but the mechanisms responsible for this 
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behavior are not yet fully understood. Measurements of 
different communities’ target either resistance, 
capacitance or impedance of the soil-plant continuum 
at scales ranging from the root segment to the field. 
Combining knowledge of both in-phase and 
out-of-phase electrical properties at a range of 
frequencies (length scales) offers opportunities to 
separate signatures from soil and root and identify key 
processes in the equivalent electrical circuit of the 
soil-plant continuum.  
Future research should be focused on developing and 
parameterizing equivalent circuit models for the 
soil-plant continuum under study, so that the 
contribution of different components to the in- and 
out-of-phase electrical properties can be quantified and 
used as diagnostic or imaging tools. Further, 
development of mechanistic soil-root models can be 
used as a calibration model for circuit models and they 
can also help us in understanding the effect of the 
multiple scale levels involved in the underlying 
processes.  

 

1.1 Introduction 
 

Understanding root zone processes is crucial for 
sustainable agriculture and food production. Traditional 
methods of soil and root investigation provide insights 
into the structure, composition, and variability in the 
subsurface. However, they have clear limitations in 
terms of temporal and spatial resolution mainly caused 
by the spatial heterogeneity of the root zone and its 
dynamics. Root growth, plant water, and nutrient 
uptake, and transient boundary water fluxes create 
highly heterogeneous and dynamic patterns in root and 
soil properties that can be difficult to capture, even 
with a high-density network of point sensors 
(Jayawickreme et al. 2014).  
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One of the key opportunities in agrogeophysics is the 
non-invasive investigation of root biomass (Amato et 
al. 2009). Due to the vital role root biomass and 
architecture play in plant breeding, drought tolerance, 
and carbon sequestration, measurements of root extent 
and distribution are necessary for proper understanding 
and modeling of plant growth, root water uptake, and 
the carbon balance of agricultural systems. 

Root biomass and soil water content are the two 
primary drivers of sub-surface electrical properties that 
can influence Geophysical measurements (Amato et al. 
2008). Other secondary drivers include soil salinity, 
soil temperature, soil bulk density, soil porosity, and 
soil texture (Friedman 2005), and soil microbes in the 
rhizosphere (Yan and Marschner 2012). Often these 
drivers are interconnected. For instance, root growth 
can modify soil porosity and bulk density while canopy 
shade can reduce soil temperature thereby affecting 
measured electrical properties (Ni et al. 2018).  

Discrimination of root segments from soil medium 
using the Geophysical method primarily depends on 
electrical conductivity (EC) and polarization contrast 
between root segments, rhizosphere, and soil medium. 
Since this EC/polarization contrast further depends on 
the type of root and soil conditions, it is important to 
know, in prior, what can be the expected influence of 
roots on ERT/EIT measurements. It must be noted that 
neither the soil electrical conductivity nor the root 
electrical conductivity are material constants but 
instead depend on several other factors as described in 
the following sections of this chapter. 

The aim of this chapter is to provide a background for 
the thesis. In particular, we examine the ERT and EIT 
methods. The chapter is organized as follows: After a 
brief introduction to electrical conduction and 
polarization in plants and soils, we will describe the 
different measurement techniques and highlight their 
potentials and limitations. We will also discuss the 
widely used petrophysical transfer functions used to 
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estimate soil water content from ERT/EIT 
measurements. Then we differentiate vegetated soil 
from bare soil in terms of petrophysical models and 
finally compare the regimes of soil-root electrical 
property contrasts under which we can extract the 
information about roots via ERT or EIT method. 
Finally, we will discuss future perspectives and identify 
knowledge gaps for this active field of research. 

 

1.2 Theoretical background 
 

Early works of Dvořák et al. (1981) showed that plant 
tissues behave like a Resistor and Capacitor (RC) 
circuit. Using the current decay curve, they could 
characterize the electrical properties of leaf tissues of 
following plant species: Zea mays, Dactylis glomerata, 
and Phalangium comosum. They suggested that 
resistance of plant tissues depends on spatial 
arrangements of cells and different ionic pathways 
within the plant tissue while cytoplasmatic membranes 
behaved like a capacitor. The current decay curve that 
the authors observed differed for different species 
suggesting the role of cellular structures of plant tissues 
(Dvořák et al. 1981).  

Numerous studies have used electrical properties of 
plant tissues such as electric potential, resistance, and 
capacitance to investigate different aspects of 
physiology such as root growth rate, root system size, 
phloem thickness and width, wood decay, fungal 
infections, tree vigor and moisture content (Gora and 
Yanoviak 2014). 

We discuss both direct current (DC) resistive properties 
of plant tissues that are relevant to ERT monitoring and 
polarizing/capacitance aspects that are relevant to EIT.  
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1.2.1 Lossy dielectrics 
 

Because plant tissues and soil materials belong to the 
class of lossy dielectrics meaning they have finite 
electrical conductivity yet exhibits dielectric behavior. 
The conduction in the soil-root system is mainly ionic 
in nature, where both anions and cations contribute to 
the conduction and polarization phenomena. We will 
first present here some of the basic 
theory/nomenclature used in lossy dielectrics.  

Lossy dielectrics are in-between perfect conductors like 
metals (pure resistors) and perfect dielectrics (pure 
capacitors). They behave like leaky capacitors that 
dissipates stored electrical charges into heat. We can 
express the relative electrical permittivity of such a 
lossy dielectric medium as: 

                                                                             (2.1) ϵ = ϵ' − 𝑖ϵ''

where,  is the dielectric term describing the ϵ'

capacitance, and  is the dielectric loss factor ϵ''

describing the dissipation via resistance. The current 
density inside such a medium consists of DC and 
displacement parts given by (Kuang and Nelson 1998): 

                                  𝐽
→

= σ
𝑑𝑐

𝐸
→

+ ϵ
0
ϵ ∂𝐸

→

∂𝑡  = σ
𝑑𝑐

𝐸
→

+ 𝑖ωϵ
0
ϵ𝐸

→

(2.2) 

where,  is the applied harmonic electric field to the 𝐸
→

material,  is the DC electrical conductivity of the σ
𝑑𝑐

material,  the angular frequency of , and the  ω 𝐸
→

ϵ
0

permittivity of free space.   

Substituting (2.1) in (2.2), we get: 
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 =  σ
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+ 𝑖ωϵ
0

ϵ' − 𝑖ϵ''( )𝐸
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                                    = σ
𝑑𝑐

𝐸
→

+ 𝑖ωϵ
0
ϵ'𝐸

→
+ ωϵ

0
ϵ''𝐸

→

                             = (σ
𝑑𝑐

+ ωϵ
0
ϵ'') 𝐸

→
+ 𝑖ωϵ

0
ϵ'𝐸

→

                                                  = (σ
𝑑𝑐

+ ωϵ
0
ϵ'') 𝐸

→
+ 𝑖ωϵ

0
ϵ'𝐸

→

(2.3) 

From (2.3), we can entirely express the transfer 
function relating  and   in terms of complex 𝐽

→
 𝐸

→

conductivity: 

                                                           𝐽
→

= (σ' + 𝑖σ'') 𝐸
→

(2.4) 

where,  represents ionic DC σ' = σ
𝑑𝑐

+ ωϵ
0
ϵ''

conduction and frequency-dependent conduction via 
dielectric relaxation, =  represents the σ''  ωϵ

0
ϵ'

capacitance property of the medium.  

We can describe the electrical property of a soil-root 
continuum entirely by  and . Alternatively, we can σ' σ''

also use magnitude (  and phase ( ) notation or its |σ|) ∠φ
inverse resistivity ( ) to describe the medium property: ρ

                                                               (2.5) σ' + 𝑖σ'' = |σ|∠φ

                                                                          ρ = 1
|σ| ∠φ

(2.6) 

In magnitude and phase rotation, the magnitude part 
describes the conduction aspect while the phase part 
(measured in radians) describes the polarizing or 
capacitance aspects of the medium.  

Normally the measured electrical quantity is the 
impedance of a material ( ) which is defined as the 𝑍
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ratio of applied voltage ( ) to the current induced ( ) 𝑉 𝐼
within the material: 

                                                                                 𝑍 = 𝑉
𝐼

(2.7) 

The impedance ( ) is dependent on the size, shape, and 𝑍
cross-section of the material that is being tested. 
However, resistivity or conductivity (Eqs. 2.5 and 2.6) 
is a material intrinsic property that is the size or shape 
independent.  

1.2.2 Conduction and polarization mechanisms in 
soil-root systems 
 

Electricity can flow in the soil through three pathways: 
the first one consists in a solid phase made up of 
particles with varying chemical composition, size, 
shape and organic content; a second pathway is the 
mode of the pore liquid phase composed mainly of soil 
water and solute and, the last pathway is the gaseous 
phase consisting of atmospheric gases. In vegetated 
soils, we have a fourth pathway: root segments and 
rhizosphere (See Fig. 2.1).  

 Conduction Mechanism 

Soils conduct electricity mostly through electrolytes or 
ions that are present in the soil liquid phase and at the 
surface of soil particles. Rhoades et al. (1989) pointed 
out the three different conduction paths for electric 
current in unvegetated soils: a) conduction through 
entirely liquid phase of the soil, b) ionic conduction 
along the surface or through the volume of two solid 
soil particle in contact and c) conduction through both 
solid and liquid phase of the soil. Rhoades developed a 
model explaining the specific conductivity of soil 
represented by the above three conductance paths. 
However, in vegetated soils, an additional path could 
exist, i.e. electrical conductance via root segments, 
owing to roots distinct electrical properties as discussed 
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in the previous section. In fact, electrical conduction 
via root segments was observed in an experimental 
study (Aubrecht et al. 2006). Further, the current 
pathways in the root segment also depend on axial and 
radial conductivity and internal root structures such as 
xylem, cortex, and stele (Anderson and Higinbotham 
1976; Peruzzo et al. 2020). When the axial conductivity 
of root segments is higher than the radial conductivity 
of the root segment, the current flowing inside the root 
segments tends to flow in xylem along with the root 
architecture without leaking into the soil for a 
considerable distance (Peruzzo et al. 2020). On the 
other hand, if the radial conductivity is higher than the 
axial conductivity, any electric current inside root 
segments quickly leaks into the surrounding soil 
medium.  

 

 Polarization Mechanism  

Roots are the primary source of polarization in the 
soil-root system (Weigand and Kemna 2017). Roots are 
made up of cells that contain organelles and 
intracellular fluids (ICF), together called the cytoplasm 
(see Fig. 2.1-a). In-plant cells, these cell components 
are enveloped by cell membranes and walls. This 
network is called the symplast. Between cells, there are 
extracellular spaces, also filled by a liquid, called the 
extracellular fluid (ECF). The network of water-filled 
cell walls and ECF is also called the apoplast (Raven et 
al. 2005). The apoplastic and symplastic pathways are 
both responsible for the transport of water and nutrients 
in the plant and therefore play an important role in 
electrical current flow. Current conduction depends on 
the resistance of the apoplast and extracellular fluid 
whereas all membranes and walls play an important 
role in the storage of electrical charges (polarization). 
Conduction is assessed by measuring resistance and 
then calculating resistivity or conductivity, while 
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polarization is assessed by measuring the capacitance 
of the biological tissue. Both conduction and 
polarization can also be assessed simultaneously by 
measuring the electrical impedance of biological tissue 
and then calculating the complex resistivity. The real 
part of the complex resistivity gives information about 
its conduction properties while the imaginary part gives 
information about its polarization properties. 

The cell membrane is made up of a 
protein-lipid-protein layer (see Fig. 2.1-a). Polarization 
occurs in plant tissues because this protein-lipid-protein 
layer forms a selective barrier to specific ions, resulting 
in a charge accumulation at the interface. The 
polarization strength depends on the frequency of the 
alternating electric field, ionic concentration, water 
content, tissue composition, and health or structural 
heterogeneity (Bera et al. 2016). Polarization is 
assumed to occur at three frequency ranges: the α-, β-, 
and γ-range (Schwan 1992).  

Current flow pathways in plant tissues depend on the 
frequency of the applied electrical field. At low 
frequencies, the capacitance effect of the cell 
membranes is so high that it does not allow the current 
passage, and instead the current passes through the 
apoplast (see Fig. 2.1-b). In this case, the total 
impedance will be mainly determined by the resistance 
of the extracellular fluid (Repo et al. 2012; Bera et al. 
2016). As the frequency increases, the capacitance of 
the cell membranes reduces, and the cell membranes 
become increasingly more conductive. They then allow 
current flow through the entire cell (see Fig. 2.1-c) 
such that the total impedance will be a resulting 
combination of that of the intracellular and the 
extracellular fluid (Repo et al. 2012; Bera et al. 2016). 
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Figure 2.1: Schematic illustration of a) plant cell, showing 
the organelles, the cell wall, and the 3-layer 
(protein-lipid-protein) cell membrane. The 
frequency-dependent current paths through plant tissues, 
showing b) low-frequency current path and c) high 
frequency 

 
In addition, both root surface and soil particles 
(containing clay) have negatively charged surface, onto 
which a thin firm film of positive ions always 
surrounds. It is termed as a stern double layer. Outside 
the stern double layer, we have another diffusive layer 
of negative ions loosely held by the stern layer and 
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easily influenced by an external electrical field, soil 
water fluxes, and other dynamics. Relaxation of 
diffusive double layers present in the soils and plant 
root surfaces and interfaces occurs at the α-polarization 
range (Kemna 2000). These double layers are thin 
layers of opposite charges with both fixed and diffusive 
layers. The diffusive layer also affects the ion 
conduction across the soil-root medium by setting them 
into relaxation mode. When ions flow across charged 
soil or root surfaces (double layer), they form ionic 
gradients due to charge accumulation and redistribution 
process and thus store electrical charge similar to a 
capacitor. This capacitive behavior gives rise to the 
observable polarization response in induced 
polarization methods (Kemna 2000).  

Movement of ions across cell walls within the root, 
from soils to root and vice versa can cause ionic 
gradients that make plant root surfaces acquire a net 
negative charge in soils (Kinraide et al. 1992). The 
interaction of negatively charged root surface with the 
surrounding ions present in the soil forms an electric 
double layer (Li et al. 2015). In an electric double 
layer, the electric potential exponentially drops from 
the highest absolute value (ignoring the negative 
polarity) at the surface of the root to its lowest absolute 
value away from the root (Fig. 2.2). According to Li et 
al. (2015), studying electric double layers in root 
surfaces is important as they influence the nutrient 
uptake process.  
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Figure 2.2: Schematic of the double-layer structure in the 
root surface. Figure adapted from Li et al. (2015). 

1.3 Measured Electrical properties of Roots 
 

1.3.1 Resistive properties of Plant tissues: 
experimental values 
 

The electrical resistivity of plant tissues including roots 
depends on several variables such as water channel 
pathways inside the plant tissue, ionic concentration, 
ambient temperature, ion mobility, measuring voltage, 
and water content of the plant cells (Fensom 1966; 
Glerum 1969; Aubrecht et al. 2006). Therefore, 
electrical resistivity in plant tissues is not material 
constant and influenced by many factors described 
above (Aubrecht et al. 2006).  

The aqueous solution inside plant cells consists of 
various solutes that influence the electric current flow 
depending on the type of solute. For example, solute 
such as sucrose tends to increase the electrical 
resistance while ions such as potassium tend to 
decrease the electrical resistance (Stout 1988). Similar 
to water flow in plant tissues, electrical current in tissue 
can choose either apoplastic or symplastic paths or 
both. These paths have different electrical resistivity 
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(Anderson and Higinbotham 1976). The passage of DC 
in plant tissue is mainly apoplastic (Aubrecht et al. 
2006) and studies conducted on Maize leaf tissue show 
that the apoplastic path has the lowest degree of 
anisotropy in electrical resistance (Ksenzhek et al. 
2004).  

Further, different types of tissue have different 
electrical resistivity spanning a very broad range as 
shown in Figure 2.3 (Dainty and Hope 1959; Fensom 
1960; Wilner 1964; Fensom et al. 1965; Hayden et al. 
1969; Anderson and Higinbotham 1976; Kulkarni et al. 
1981; Repo and Zhang 1993; Cao et al. 2010; Mancuso 
2011; Gora and Yanoviak 2014; Ehosioke et al. 2018). 
Electrical resistivity of root tissues from various works 
of literature, which range at least two orders of 
magnitude. Plant cells/root tissues have lower 
resistivity while fiber/stem tissues seem to have higher 
resistivity (Fig. 2.1). Some plant tissues like roots are 
highly anisotropic (Anderson and Higinbotham 1976; 
Behrens and Gradmann 1985). On the other hand, 
tissues such as leaves are less electrically anisotropic 
(Ksenzhek et al. 2004).  

.  
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Figure 2.3: Electrical resistivity of plant tissues reported in 
various literature. The color code represents a different type 
of tissue: root (brown), cells(grey), fibers(green), and stem 
(blue). The error bar represents the variations within a 
tissue.       
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We mention some studies below that used electrical 
resistance as a parameter to characterize root segments:  

● Ginsburg and Laties (1973) studied electrical 
properties of maize root in a bathing potassium 
chloride solution by separating roots into stele and 
cortex structures. They showed that varying the 
concentration of the bathing medium, the root 
resistance remained approximately unaffected, but 
the stele resistance showed variations implying the 
higher sensitiveness or leakiness of stele layer to 
the surrounding medium.  Thus, maize root behaves 
electrically like a leaky conducting cable. They also 
show that xylem has higher electrical resistance 
than the rest of the root. This suggests that the root 
structure is anisotropic in its electrical property due 
to stele and cortex structures. 

● Anderson et al. (1976) found that older maize root 
segments are more electrically conductive than 
younger roots. They performed studies on excised 
root segments and confirmed the electric anisotropy 
of root structure by showing that the outer layer of 
the root segment (cortex) has very low electrical 
resistance (~50 kΩ) in the radial direction when 
compared to the axial direction (~600 kΩ). By 
treating cortex and stele as concentric parallel 
conductors, the reported resistances, when 
converted into conductivity is of the order:  ~ σ

𝑟𝑜𝑜𝑡
0.05 S/m.  

● Repo et al. (2005) studied the electrical impedance 
of willow roots in hydroponics and could detect its 
growth based on impedance measurement.  

● Cao et al. (2010) reported that the electrical 
resistance of willow roots grown in hydroponics 
relates to root physical properties such as surface 
area, number of lateral roots, and root length.  

● Electrical impedance measurements are also used to 
estimate active root surfaces believed to be the 
zones of water uptake or nutrient uptake processes 
(Aubrecht et al. 2006; Urban et al. 2011). Their 
active root surfaces are also assumed to be the 
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zones where electrical transfer takes place between 
soils and roots (Aubrecht et al. 2006). 

1.3.2 Capacitive property of root tissues: 
experimental characterization 
 

The interior of a plant cell such as vacuole and 
protoplasmic fluids is highly conductive with an 
electrical resistivity of one to a few tens of Ohmmeter 
(Dainty and Hope 1959; Fensom 1966). On the other 
hand, the electrical resistivity of the cell wall that 
surrounds these cells are two to three orders higher 
than the cell interiors (Mancuso 2011). Highly 
conducting materials separated by insulating material 
makes a plant tissue an electrical capacitor. Because of 
high capacitances involved, root segments polarize 
much stronger compared to soils in the presence of 
induced electric field (Vanderborght et al. 2013). It has 
been long known that vacuole or protoplasmic size is 
dependent on age (Stiles 1994) and hence it is not 
surprising that experiments observe age dependency of 
electrical capacitances. For example, Dalton (1995) 
studied electrical capacitance of tomato plants in 
nutrient solution and observed high correlation to root 
mass (r~0.77). The author showed that root capacitance 
increased with the age of the root. 

Similar to electrical resistivity, many studies have 
found a positive correlation between root mass [gram] 
and electrical capacitance of roots [Nano Farads]. 
Figure 2.4 summarizes the relation between root 
capacitance and root mass from various literature.  
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Figure 2.4: Log10 of Root mass [g] versus Log10 of the 
electrical capacitance of roots [nF] of various plant/tree 
species from different works of literature as described in the 
legend. Digitization of pictorial data done using 
WebPlotDigitizer (Rohatgi 2011). 

Studies show that the observed capacitance depends on 
the surface area of roots as well as the content of the 
cells present inside the root tissues (Chloupek 1972, 
1977). For example, some species show better 
correlation while others show poor correlation between 
capacitance and root mass as shown in Figure 2.5. 
Hence, the anatomy of cells, which differs in each 
species, might also play a role in affecting their 
macroscopic measured electrical capacitances. 
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Figure 2.5: Correlation coefficient between the fresh weight 
of roots [g] and electric capacitance of roots [pF] for 
different species and substrate. The figure made from data 
given in “Table 1: Correlation and regression coefficients of 
electric capacitance and capacitance and other root 
parameters (Chloupek 1972)”. 

1.4 Overview of electrical methods for root 
system investigation 

 

1.4.1 Electrical Resistivity Tomography (ERT) 
 

ERT, also called DC resistivity imaging or Electrical 
Resistivity Imaging, determines the distribution of 
electrical resistivity in the subsurface by performing a 
set of resistance measurements on the ground surface 
and/or in boreholes. Measurements are performed by 
injecting current via two electrodes and measuring the 
resulting voltage difference at two other electrodes and 
this in various combinations of current and potential 
electrodes along a transect or grid. To determine the 
resistivity of the subsurface, a geophysical inversion of 
the measured resistances must be performed. The 
obtained resistivity distribution models are typically 
presented as tomograms. Since the inverse problem is 
ill-posed, the obtained resistivity model is non-unique 
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and typically represents a smoothed representation of 
the actual resistivity distribution. 

ERT is often used for root system investigation because 
of its high 2-D or 3-D spatial coverage, acquisition 
speed, minimally invasive nature, and 
cost-effectiveness. The application of ERT for root 
studies can be classified into direct and indirect 
methods. The direct approach focusses on root biomass 
estimation, while the indirect application investigates 
physiological processes such as water and nutrient 
uptake by the root system.  

Some ERT studies on cropped soil have demonstrated 
its ability to obtain information on root mass density 
from sub-surface electrical resistivity variations 
(Amato et al. 2008, 2009; Robinson et al. 2012; Rossi 
et al. 2011; Zenone et al. 2008). For example, studies in 
Alnus glutinosa tree roots show that root mass density 
(RMD) correlated with ERT derived   for resistive σ

𝑏𝑢𝑙𝑘
lignified roots (Amato et al. 2008). Even for smaller 
herbaceous plants, where there is low root density and 
roots are finer as compared to a tree, there can still 
exist a correlation between RMD and  (Amato et σ

𝑏𝑢𝑙𝑘
al. 2009). The influence of finer roots on  as σ

𝑏𝑢𝑙𝑘
observed by Amato et al. (2009) is due to the fact that 
finer root segments and their exudates can potentially 
act as an additional electrically conducting path thereby 
affecting ERT measurements (Vanderborght et al. 
2013). Satriani et al. (2010) was able to distinguish 
older woody roots and finer younger roots in peach 
species from ERT obtained images at laboratory 
conditions (homogeneous soil). Similarly, 
Jayawickreme et al. (2008) distinguished contrasting 
vegetation (forest and grassland) effects on root water 
uptake from ERT images showing the usefulness of this 
method at field conditions.  

Despite the success described above, imaging 
individual roots via ERT, especially in field conditions, 
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is a difficult task due to inherent ambiguity resulting 
from low contrast in electrical resistivity between soils 
and roots (Urban et al. 2011). As pointed out by Amato 
et al. (2008), finer conductive root within a soil matrix 
is difficult to image as compared to woody roots as the 
contrast between finer roots and soil in terms of 
electrical resistivity is poor. Sometimes, the electrical 
resistivity of root and soil may even overlap leading to 
the indistinguishability of root from soil (Mary et al. 
2016).   

Bulk soil resistivity is highly influenced by soil 
moisture content, porosity, mineralogy, temperature, 
and salinity level and only to a lesser extent by roots. 
The contrast between roots and soil depends highly on 
soil type and saturation state (Rao et al. 2019) and is, 
therefore, varying over time. Besides, fine roots 
actively take up water & nutrients and release different 
exudates. These processes affect resistivity at several 
temporal scales: daily (night vs day, sunny vs cloudy 
days) to seasonal (growth period vs winter or drought 
season) (Mary et al. 2018). Overall, ERT lacks 
sensitivity to root properties due to a lack of contrast 
between bulk soil and root electrical resistivity and the 
relatively low volume of a fraction of roots. Using 
resistivity as a predictor for root biomass without 
taking these factors into account is therefore highly 
uncertain to our opinion. 

The indirect application of ERT for root studies is 
based on its high sensitivity to the water content in the 
root zone, especially when monitoring root systems 
using ERT (Garré et al. 2012; Michot et al. 2003). 
Roots modify hydraulic conductivity and porosity of 
soils thereby indirectly affecting its electrical properties 
(Ni et al. 2018). Some studies show that rooted soil 
differs from bare soil in terms of its petrophysical 
function (Werban et al. 2008). While other studies did 
not observe the impact of roots on the petrophysical 
function of soil (Beff et al. 2013). The presence of root 
segments can cause a significant error or negligible 
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error in the water content estimates depending on soil 
type (Rao et al. 2019). For detailed information and 
recent advances in the ERT method in the agronomical 
context, the reader is referred to the review of Mancuso 
(2011) and Vanderborght et al. (2013). 

From the above studies, it can be understood that it is 
difficult to distinguish the influence of roots on the 
bulk electrical resistivity distribution variations in 
space or time from that of system properties (soil 
texture, porosity, stone fraction, mineralogy) and state 
variables (soil temperature, fluid conductivity, soil 
moisture). Although ERT is more sensitive to the 
moisture and salinity changes near the roots, the 
influence of their biomass is still present and adds 
time-dependent uncertainty to the quantification of the 
studied processes. 

1.4.2 Electrical Impedance Tomography 
 

Electrical Impedance Tomography (EIT) is similar to 
ERT in terms of set-up and measurement but measures 
the electrical capacitive response or chargeability of the 
sub-surface in addition to resistivity either using 
time-domain EIT approach or using frequency domain 
EIT approach. Accordingly, Time Domain Induced 
Polarization (TDIP) is the term used for time-domain 
EIT while Spectral Induced Polarization (SIP) is the 
term used for frequency-domain EIT.  

In TDIP, the sub-surface is excited with a step signal 
and the time decay of the voltage response is measured. 
The decay rate of the voltage response contains 
information on polarizability or capacitive response of 
the sub-surface (Binley and Kemna 2005). In SIP, we 
apply a continuous time-harmonic alternating current 
of a given frequency to the sub-surface and the 
resulting response is measured. The phase difference 
between response and source signal contains 
information on polarizability or the capacitive response 
of the soil-root continuum (Mary et al. 2017). We 
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illustrate of time domain and frequency domain 
approaches in Figure 2.6.  

Weigand and Kemna (2017) investigated the suitability 
of multi-frequency EIT to characterize and monitor 
plant root systems in a laboratory rhizotron experiment. 
They monitored the Spatio-temporal distribution of the 
complex electrical resistivity of the root system of an 
oilseed plant (Brassica napus) in a water-filled 
rhizotron under nutrient deprivation using EIT. Total 
polarization parameters recovered from the 
multi-frequency EIT results showed a low-frequency 
polarization response of the root system, which enabled 
a successful delineation of the spatial extension of the 
root system. The magnitude of the overall polarization 
response decreased along with the physiological decay 
of the root system due to nutrient deprivation. The 
length scales (i.e. frequencies) at which polarization 
processes where occurring did also change due to 
prolonged nutrient deficiency.  

Some authors speculate that SIP and TDIP methods are 
better suited than ERT alone in imaging roots due to 
higher contrast between root segments and soil medium 
in terms of electrical polarizability or capacitance as 
compared to contrast in electrical resistivity alone 
(Mary et al. 2016, 2017; Vanderborght et al. 2013; 
Weigand and Kemna 2017).  

Mary et al. (2016) investigated the suitability of EIT 
for mapping tree roots in dikes, they concluded that 
EIT is useful to interpret anomalies produced by woody 
roots. A similar study by Mary et al. (2017) used EIT 
to map roots embedded in the soil (field study) and 
observed that the maximum phase contrast between 
root and soil was found at a frequency of 1 Hz and 
noticed anisotropy in the polarization process such that 
the polarization signal was strongest when the current 
line was aligned to the root. They found that root water 
uptake induced soil dryness increased the electrical 
polarization signatures of the root at shallow depths 
(~20cm) in loamy soils. However, at deeper depths 

50 
 



(~70cm) the chargeability did not correspond to root 
density. In addition, the observed polarization signature 
depended strongly on soil water content level, rainfall, 
and root water uptake. Soil polarization sometimes 
masked the root polarization response suggesting the 
important role played by soil-root polarization contrasts 
(Mary et al. 2016). Even concerning polarization, roots 
can have low contrast as compared to soil depending 
on the frequency of measurement and the direction of 
measurement protocol. For example, Mary et al. (2017) 
found that the chargeability of root/soil ratio to be as 
low as 1.5 at 1.4 Hz and higher frequencies soil effect 
dominated. They could also maximize the polarization 
signatures of roots by having measurement current 
lines in parallel with the root orientation. Also, they 
observed some phase anomalies in the region of no root 
presence (Mary et al. 2017). EIT is very promising for 
root system investigation, however, some challenges 
need to be addressed in its application to explore its full 
potential. 

The challenges in the use of EIT includes: (a) difficulty 
in obtaining high-quality data due to noise and 
electrode polarization (b) forward modeling errors 
resulting from imprecise electrode locations, inaccurate 
discretization etc. (Zhao et al. 2019) (c) complex 
resistivity inversion is still basic and thus should be 
improved e.g. related errors on inversions could be 
addressed by the use of data weighting or filtering 
(Binley 2015; Adler and Boyle 2017). 
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Figure 2.6: Schematic of a soil-root continuum with an 
illustration of SIP and TDIP method. 

1.5 Petrophysical transfer relations 
 

1.5.1 Bare Soil 
 

Archie formulated the first commonly used 
petrophysical empirical relation better known as 
Archie’s law (Archie 1942). This empirical relation 
relating soil water content, denoted by  and  for θ σ

𝑏𝑢𝑙𝑘
unsaturated soil is given by Equation 2.7, where the 
fitting parameters (  and ) vary for different types of 𝑚 𝑑
soil (Friedman 2005; Vanderborght et al. 2013):   

                                                                      (2.7) σ
𝑏𝑢𝑙𝑘

= σ
𝑤

𝑛𝑚𝑆𝑑

where  is the degree of water saturation ( ,  is 𝑆 𝑆 = θ
 𝑛 ) θ

the volumetric water content,  the porosity of soil 𝑛
(assumed to be equal to saturated water content: θs), 
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 the bulk electrical conductivity of the soil σ
𝑏𝑢𝑙𝑘

medium,  the conductivity of the soil fluid phase.  σ
𝑤

According to Equation 2.7, soil can conduct electricity 
only when it is wet, and its solution is conductive. 
Thus, the soil becomes a perfect insulator if it is 
completely dry. Hill and Milburn (1956) showed that 
for clayey soils, Archie’s law needs additional terms to 
explain measured data. Waxman and Smits (1968) 
modified Archie’s law by adding a surface conductivity 
term (Friedman 2005): 

                                         (2.8) σ
𝑏𝑢𝑙𝑘

= σ
𝑤

𝑛𝑚𝑆𝑑 +  𝑆𝑑−1σ
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

where,   is the surface electrical conductivity of σ
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

the solid phase of the soil (clay content) which is 
dependent on mineral content, porosity, water content, 
and electric conductivity of soil fluidic phase 
(Vanderborght et al. 2013). In some cases, clay content 
dominates the petrophysical relation as compared to 
soil water content. For example, Sudduth et al. (2005) 
found that apparent electrical conductivity measured 
using soil sensors correlates better with a clay content 
of the soil than soil water content. Hence, the 
petrophysical model needs site-specific calibration to 
fit the observed data.  

Some authors have used simplified Waxman-Smit 
model in their fieldwork (Beff et al. 2013; Garré et al. 
2013a; Chen et al. 2019): 

                                                                      σ
𝑏𝑢𝑙𝑘

= 𝑎θ𝑐 + 𝑏

(2.9) 

where ,  and c (-) are the fitting 𝑎 [𝑆 𝑚−1] 𝑏 [𝑆 𝑚−1]
parameter accounting for surface and fluid 
conductivities in soil. Some studies also found that by 
taking the exponential of Equation 2.9, a better fit 
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could be achieved for electrical resistivity (ρ = 1
 σ

𝑏𝑢𝑙𝑘
) 

(Ackerson 2013) : 

                                                             ρ = 𝑒𝑥𝑝 (𝑎θ𝑐 + 𝑏)
(2.10) 

In Figure 2.7, we compare the electrical resistivity (ρ=
) versus soil water content ( ) from the 1

 σ
𝑏𝑢𝑙𝑘

θ

experiments of Wunderlich et al. (2013) and Al Hagrey 
et al. (2007) along with the range of root electrical 
resistivity values. Hence, at lower water content (< = 
0.15), the root system represents a more conductive 
medium than soil. We should observe root signatures in 
terms of both resistivity measurement and polarization 
measurements at these water contents. An experimental 
study by Mary et al. (2016) confirms this conclusion. 
They observed that the polarization signature of roots 
was detectable only when root water uptake leads to 
drier soil, while anomalies were present at higher water 
contents.  

 

Figure 2.7:  Petrophysical experimental data for different 
types of soils from works of literature as described in the 
legend. We show the Root electrical resistivity from table 1 
as a brown patch to the left illustrating the resistivity 
contrast between root and soil medium. Digitization of 
pictorial data done using WebPlotDigitizer (Rohatgi 2011). 
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1.5.2 Impact of Vegetation 
 

Soil colonization by roots can affect soil hydraulic 
conductivity (Rasse et al. 2000; Kodešová et al. 2006), 
soil bulk density (Young 1998), and soil porosity 
(Bodner et al. 2014). The electrical conductivity of soil, 
in turn, depends on these soil properties (Friedman 
2005). Also, swelling and shrinking of roots cause air 
gaps that are spatially and temporally changing 
in-between soil and root (Carminati et al. 2009). Root 
movements and their decay also create macropores in 
the soil (Holtham et al. 2007). Air gaps and macropores 
due to roots make soil electrical measurements 
anisotropic. Further, in the regions where the root is in 
contact with soil, known as root surface absorption 
area, root segments serve as an additional path for the 
electrical current to flow within it (Aubrecht et al. 
2006; Urban et al. 2011). The root tissues have distinct 
electrical properties (see next section). Hence, it is not 
surprising that rooted soils can behave quite differently 
as compared to bare soils in terms of electrical 
response. 

Here we compare three different experiments from 
different studies to illustrate the impact of vegetation: 

● Experiment 1: Werban et al. (2008) conducted a pot 
experiment (30 cm radius, 50cm height) with 
Lupine roots in sandy soil and provided the 
electrical resistivity versus water content for bare 
and rooted soil in Figure 3 of their paper. The 
digitized data from this figure is shown here in 
Figure 2.6-a. The pot experiment consisted of a 
pre-grown fully developed Lupine root system. In 
Figure 1.1-a, we saw that root decreases the 
electrical resistivity of soil.  

● Experiment 2: Ni et al. (2018) conducted a field 
experiment in a region covered with roots of the 
Chinese Banyan tree and Bermuda grass as well as 
in the region of bare soil. They provided the water 
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content as a function of time in Figure 6 and 
electrical conductivity data as a function of time in 
Figure 5 of their paper. We extracted the data and 
converted it into resistivity versus water content 
plot (Fig. 1.1-b). Interestingly, we observe the 
decrease in electrical resistivity due to roots similar 
to the work of Werban et al. (2008).   

● Experiment 3: Mary et al. (2016) conducted a pot 
experiment (length: 37 cm, height: 28 cm) with an 
excised Poplar root of diameter 4 cm and length 20 
cm buried within the container. They compared 
electrical conductivity as a function of frequency 
for bare soil and rooted soil at three different water 
content levels in Figure 6 of their paper. We first 
extracted the data from this figure, averaged the 
electrical conductivity with frequency axis, and 
then converted it into electrical resistivity. Figure 
1.1-c showed the extracted data as a function of 
reported water content levels. Although the impact 
of roots was smaller, the trend of decreasing 
resistivity due to roots was evident.   

 

1.6 Soil-root mixing 
 

Figure 2.8 illustrates the electrical mixing of soil and 
root components in vegetated soils. In the study of 
Rajkai et al. (2005), the shape of rooted soil spectrum 
is similar to root specific spectra while its magnitude is 
in-between root only and soil only spectra’s (Figs. 2.8-a 
and 2.8-b). They used sunflower species grown in a 
sandy medium with a soil water content of around 
25%. 

On the other hand, the shape of phase spectra for silty 
soil with poplar root looks similar to soil-only spectra 
and its magnitude is in-between root-only and soil-only 
(Fig. 2.8-c). We must note that the conditions of Mary 
et al. (2017) were different from Rajkai et al. (2005). 
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Mary et al. (2017) used poplar root in silty soil with a 
soil water content around 10%, which is significantly 
lower than the water content of Rajkai et al. (2005). 
Also, the species and volumes of roots in the two 
studies were different. However, we see a general trend 
of roots affecting the soil-root continuum in terms of 
SIP spectra.  

 

Figure 2.8: Comparison of soil only, root only, and root-soil 
combined data. a) Electrical impedance spectrum of 
sunflower roots from Figure 6 of Rajkai et al. (2005). b) 
Phase spectrum of sunflower species from Figure 7 of 
Rajkai et al. (2005). c) Phase spectrum of poplar species 
from Figures 6-a and 7-a of Mary et al. (2005). Digitization 
of pictorial data done using WebPlotDigitizer (Rohatgi 
2011). 

The two medium, soil and root mix electrically to give 
a single soil-root continuum response. To separate the 
soil and root components, understanding of individual 
soil/root response and their geometrical connection is 
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essential. Roots represent complex architecture 
embedded in the soil matrix. Neither root nor soil has 
simple geometry to determine the electrical mixing 
behavior analytically calling for a numerical model.  

However, assuming root and soil to be two phases 
homogeneous distribution of electrical conductivities, 

  and , we can characterize such a simplified σ
𝑟𝑜𝑜𝑡

 σ
𝑠𝑜𝑖𝑙

system analytically by power averaging mixing model 
(Winchen et al. 2009): 

                                       σ
𝑚𝑚

α( ) =  𝑓 σ
𝑟𝑜𝑜𝑡

α( ) + (1 − 𝑓) σ
𝑠𝑜𝑖𝑙

α( )⎡⎢⎣
⎤⎥⎦

1/α

(2.11) 

where, α    = Mixing model exponent describing the 
geometry of two phases,   is the relative area of  𝑓 σ

𝑟𝑜𝑜𝑡
to the total area and  is the relative area of  (1 − 𝑓) σ

𝑠𝑜𝑖𝑙
to the total area. The  in Eq. (11) is the effective σ

𝑚𝑚
electrical conductivity predicted by the power-law 
mixing model for different α ranging from -1 to 1. If 
the two-phase component is perfectly in series 
connection, then α = -1 and for perfectly parallel 
connection, α = 1. In reality, the soil-root system 
represents a mixture of series and parallel connection, 
and hence, α captures this complex connectivity 
information. 

 

1.7 Need for Explicit modeling of root 
 

Equivalent electrical circuit models are essential to 
interpret contributions of different processes in the 
soil-plant continuum governing electrical conduction 
and polarization during plant- or field-scale 
measurements. The use of multiple 
frequencies/broadband allows the determination of 
length scales, which is essential for the development of 
electrical circuit models. Small-scale measurements 
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such as Resistance and polarization measurement on 
root segments (with or without the plant still 
connected) are important to validate these electrical 
circuit models and determine the contribution of 
individual components on the behavior of the full root 
architecture in the soil. Recent studies show 
low-frequency polarization of root systems probably 
originating from polarization at various double layers, 
be it at cell membranes, or larger ion-selective 
structures such as the Casparian strip or the root 
surface. This is not only important to study roots, but 
also to study soil moisture and solute transport 
dynamics about plant growth since the contribution of 
the presence of roots to the measured electrical signal 
is now typically neglected. 

Dalton (1995) developed the first equivalent electrical 
network model comprising of resistor-capacitor 
components that could represent the electrical response 
of a root system architecture. According to the author, 
the root capacitance was an indirect measure of the 
active zone of the root surface area that exchanges ions 
and water with the surrounding soil.  

A similar lumped circuit based impedance model of the 
root system was later developed by Ozier-Lafontaine 
and Bajazet (2005). In their model, the soil was a pure 
resistor, while the soil-root interface and root-stem 
continuum comprised of parallel resistor-capacitor 
components. However, they could not strictly relate 
soil-root interface processes to the lumped circuit 
parameters. Earlier, Repo and Zhang (1993) showed 
that a distributed model with reduced circuit 
components (resistors and capacitors) of Zhang and 
Willison (1993) fits the impedance of plant tissues 
better than lumped circuit model. Even with the 
distributed model, they could fit only the bark layer but 
not the wood. They observed large variations among 
different samples due to physiological differences. To 
quantify the electrical response of roots in soils, a 
widely used circuit model is inadequate in capturing 
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the complex geometry of root architecture and its 
electrical connection to the soil matrix for the 
following reason: First, there are few parameters in 
circuit model to fit large variations of electrical 
response observed in soil-root medium leading to 
non-uniqueness of solution. That is, more than one 
circuit parameters can explain the observed response. 
Second, the electrical circuit assumes components to be 
connected in series or parallel but in reality, root 
structures are complex and are connected to soil neither 
in series nor parallel fashion. 

Thus, explicit modeling of root structures becomes 
important (where circuit model fails) to understand the 
electric response of roots in soils.  

1.8 Electrical measurements on root 
segments 

 

To get insight on root electrical properties and to 
parametrize the process-based model that we develop 
in the next chapter, we describe the experimental setup 
and some of the results of  Ehosioke et al. (2018) which 
is a part of the Ph.D. thesis of Solomon Ehosioke who 
is also our collaborator and part of an e-root project 
that funded this Ph.D. thesis (Ehosioke et al. 2018). 

1.8.1 Introduction 
 

We examined four different species for their electrical 
properties:  a) Maize (Zea Mays), b) Ray Grass 
(Lolium Perenne), c) Brachypode (Brachypodium 
distachyon) and d) Rapeseed (Brassica napus) for their 
electrical properties. The different root species 
considered here have varying morphology. Maize, 
Brachypodium, and Ray grass are classified as 
monocot roots. In monocot roots, the root segments are 
spatially spread into complex networks and all the 
segments (primary and secondary) participate equally 
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in water and nutrient uptake process. Ray grass has a 
fibrous root system that has numerous branches and 
very fine root segments inside the soil. In addition to 
primary roots, maize has an aerial root system, where 
the root develops above the soil and then penetrates the 
soil to form fibrous root architecture. Brachypodium is 
architecturally simpler compared to Maize and Ray 
grass in terms of root architecture. Rapeseed develops a 
deep taproot and a near-surface fibrous root system. 

1.8.2 Measurement of Electrical DC Resistance 
 

The electrical resistance of root segments was 
measured using a digital multimeter (Fluke 289) and 
was converted into electrical conductivity ( ) by σ

𝑟𝑜𝑜𝑡
approximating the root segment as a cylindrical 
geometry similar to Cao et al. (2010).  All species 
(except Rapeseed) were considered in this experiment. 
The measurement direction of root segments in Cao et 
al. (2010) is from root apex towards root collar while it 
is opposite in the case of our experiment (Ehosioke et 
al. 2018). The segment length between the 
two-measuring electrode was 2cm.  In Figure 2.9, we 
show the measurement set-up used to measure  for σ

𝑟𝑜𝑜𝑡
root segments. To improve the electrical contact 
between root segments and measuring electrodes, 
conductivity gel (Rodisonic, from Pannoc Nv/SA 
Belgium) was used. 

 

Figure 2.9: a) Uprooted maize roots washed with distilled 
water, b) Experimental set-up for measuring the electrical 
resistance of intact root segments using Fluke 289 

61 
 



multimeter, and c) close-up view of electrodes and intact 
root segment. 

Cao et al. (2010) measured resistivity of willow root 
segments to be in the range of 8.9 to 13 Ω.m with a 
mean value of 10.5 Ω.m. They find that the root 
segments have lower resistivity compared to that of the 
stem segments whose range was between 73.9 to 134.8 
Ω.m. From Figure 2.10, we see that the resistivity of 
willow root, ray grass, and brachiopods are 
approximately in the same range (3 to 20 Ohm m) 
while the maize root has slightly higher resistivity and 
the brace roots of maize show the highest resistivity. 
For maize, we observe a gradual decrease in electrical 
resistivity of intact maize root segments as the segment 
distance from root collar increased. The trend is 
different in primary and brace roots, where the brace 
root resistivity decreases much more rapidly with 
increasing distance of the segment from the root collar 
compared to primary root segments.  

The electrical resistivity of roots also varies concerning 
the root cross-sectional area. Our measurements 
indicate that thinner roots have lower electrical 
resistivity as compared to thicker roots (Fig. 2.9-b). 
This could be due to the higher water content of 
younger roots. Since we measured intact root segments, 
the surface electrical resistivity of endodermis and 
contact resistance of stele and cortex layers of the root 
are accounted for in the measurements. The thicker 
outer layer (cortex) of the root is electrically more 
insulating than water-rich younger roots or inner part 
(stele) as seen in early studies of Anderson et al. 
(1976). However, our measurements represent the 
combined resistivity of cortex and stele in an intact 
form. 
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Figure 2.10: a) Resistivity of different root species Maize 
(primary roots), Maize brace root, Brachypode, Ray grass, 
and b) willow root (data taken from Cao et al. 2010). 

Age-dependent electrical resistivity variations within a 
given species were earlier studied in poplar roots 
(Zenone et al. 2008). Figure 2.10 shows that within the 
same species (Maize), in addition to age, different 
types of roots (brace and primary roots) can have 
different electrical properties. 

 

1.8.3 Measurement of Polarization Signatures 
 

The impedance was measured at different frequencies 
ranging from 1 to 45 kHz using the measurement set up 
of Zimmermann et al. (2008) shown in Figure 2.11. In 
addition to Maize (Zea Mays), Ray Grass (Lolium 
Perenne), Brachypode (Brachypodium distachyon), we 
included an additional species: oilseed (Brassica 
napus). It consisted of a signal generator and a 
4-electrode setup for measuring impedances at different 
frequencies. The custom-made root holder with 
electrodes (Fig. 2.11-c) was 3-D printed at the Institute 
of Bio- and Geosciences, Forschungszentrum Jülich 
GmbH. We placed conductivity gel in-between root 
segments and electrodes for good contact. We then 
corrected the measured impedances for the effect of 
conductivity gel to obtain the root only electrical 
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properties. Measured impedances were then converted 
to electrical conductivity and phase (or complex 
conductivity) using the measured radius of root 
segments, assuming cylindrical root geometry as 
described in Cao et al. (2010). We used a digital caliper 
to measure the radius of root segments accurately. We 
repeated the measurements for four replicates within a 
given species for a statistical average.   

 

 

Figure 2.11: Block diagram of SIP measuring system with 
its main components: a) signal generator, b) SIP 4-electrode 
system and c) root segment holder with electrodes. 

Figure 2.12 depicts the measured SIP response of 
different root species using the setup of Figure 2.11. 
We chose four different species (Fig. 2.12) and at the 
time of measurement, they were four-week-old 
samplings from the date of sowing. The magnitude 
response of the electrical conductivity of different 
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species followed a similar trend, that is, they tend to 
increase with increasing frequency. The ranges of 
electrical conductivity in magnitude are 
species-specific with oilseed roots being highly 
conductive and Brachypodium being the least 
conductive among the species compared (Fig. 2.12-a). 
We can attribute these differences in magnitude 
response to anatomy, ionic, and water content of the 
root segments. On the other hand, we can distinguish 
different species in phase only above 100 Hz, below 
which all species have approximately the same 
response (Figure 2.12-b).  

 

Figure 2.12: Spectral Induced Polarization signature of 
four-week-old root segments (Spectra of electrical 
conductivity): a) magnitude and b) phase. The error bar 
represents the standard deviation of four different replicates 
within each species. 

 

1.9 Summary and Conclusions 
 

Both plant scientists and hydrogeologists use/see 
potential in electrical methods to characterize the root 
system of plants. Measurements show correlations of 
electrical properties with root biomass and/or root 
activity, confirming that roots can behave like resistors 
and capacitors such that both conduction and 
polarization occurs when roots are present. Although 
initial studies focused on resistance and capacitance 
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measurements used to study conduction and 
chargeability in roots separately, the most potential lies 
in measurements focussing on impedance. This is 
because it allows both the resistance and the 
chargeability to be quantified, giving information on 
different properties of the root zone simultaneously. 
The resistance of bulk soil with roots is still mostly 
connected to soil moisture dynamics and is best used to 
study roots indirectly (looking at water depletion 
patterns they cause). Chargeability is related to the 
anatomy of the tissue and cell structure (e.g. cell 
membranes properties) and fluid content properties, 
and plant physiological state. 

In this chapter, we provided the context under which 
understanding the electrical properties of the soil-root 
continuum is relevant to ERT and EIT methods. The 
electrical properties of the soil-root medium are not 
material constants but depend on several other 
properties. Soil-root electrical contrast needs to be high 
enough to have a detectable root signature for root 
imaging applications using ERT/EIT. Our review 
suggests that how complex this contrast can be. 
Though roots possess stronger polarization response, at 
higher soil water content, they become unobservable 
due to soil dominance (Mary et al. 2016). Figure 2.6 
suggests that lower water content in soil should make 
electric current to take root segments as a flowing path 
and hence ideal for root imaging with the EIT method.  

From the measurement of root segments described in 
the previous section, we can conclude the following: 

a) The electrical resistance of a root segment is 
species, age, and root type-dependent (Fig. 2.9). 

b) Compared to soils and earth materials, whose 
polarization range from 0 to 20 milliradians 
(Vanhala and Soininen 1995; Vanderborght et al. 
2013), we can see that the root segment exhibits a 
very large polarization signature (0.2 to 0.6 
radians).  
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c) We have parameterized the effective electrical 
properties of root segments which can be used to 
model soil-root electrical response at root 
architectural scale.  

 

 

 

 

1.10   Future research perspectives 
 

More studies are needed to link root physiology and 
electrical properties (conduction and polarization) of 
roots at different scales. Equivalent circuit models are 
used to derive effective properties to explain electrical 
polarization in roots at the macroscopic scale in bulk 
soil or water. Nevertheless, data obtained at the root 
segment scale are necessary to validate phenomena 
underlying conduction and polarization occurring at the 
root segment and root architecture scale and establish 
the models summarizing these phenomena. 

Due to the complexity of the root system architecture 
(RSA) embedded in the soil matrix, upscaling electrical 
properties measured at root segment scale to plant scale 
or to field scale is a challenging task (Mary et al. 2016; 
Weigand and Kemna 2017). Process-based multi-scale 
numerical modeling of a soil root continuum can thus 
pave a way for our understanding of the upscaling 
mechanism as we move from segment to plant and to 
field scale. A recent detailed numerical study at plant 
scale shows that roots indeed affect ERT measurements 
and the effective EC (Rao et al. 2018). However, 
explicitly representing root architecture (as in their 
study) in the computational domain demands a very 
high spatial resolution in the numerical grid, thus 
increasing computational time and memory 
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consumption. Further research on numerical 
approaches for such mechanistic models and the effect 
of the multiple scale levels involved in the underlying 
processes on the macroscopic properties is required. 
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PART III 
 

ELECTRICAL 
SIGNATURE OF 
ROOTS AT 
RHIZOTRON AND 
POT-SCALE 
 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

                                                                                      

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 A PROCESS-BASED 
MECHANISTIC 
MODEL FOR 
ELECTRICAL 
CONDUCTION IN THE 
SOIL-ROOT 
CONTINUUM 

 

Chapter adapted from: 

Rao S, Meunier F, Ehosioke S, Lesparre N, Kemna A, 
Nguyen F, Garré S, Javaux M. Impact of Maize Roots 
on Soil–Root Electrical Conductivity: A Simulation 
Study. Vadose Zone Journal. 2019 Oct 1;18(1). 

___________________________ 
 

ABSTRACT 
Electrical Resistivity Tomography (ERT) has become 
an important tool to study root-zone soil water fluxes in 
field conditions. ERT results translate to water content 
via empirical petrophysical relations, usually ignoring 
the impact of roots. However, studies in the literature 
show that roots in soils could play a non-negligible role 
in bulk electrical conductivity of the soil-root 
continuum. Yet, we do not completely understand the 
impact of root segments on ERT measurements. 

In this numerical study, we coupled an electrical model 
with a plant-soil water flow model to investigate the 
impact of root on virtual ERT measurements. The 
coupled model can stimulate root growth and 
development, water flow in soil and root systems, as 
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well as electrical transfer in the soil-root continuum in 
3-D.  

ERT forward modeling in 3-D illustrates that in rooted 
soils shows that for every 1% increase in root to sand 
volume ratio, there can be 4 % increase in uncertainty 
of effective electrical conductivity, computed using the 
model, caused due to the presence of root segments 
while such uncertainty in loam medium is 0.2%. 
Further, this uncertainty is three times higher (13% in 
the sand and 0.7% in loam) in apparent conductivity 
computed using point electrodes. Further, the influence 
of root segments on ERT measurements depends on the 
root surface area (r~0.6) and electrical conductivity 
contrast between root and soil (r~0.9) as revealed by 
correlation analysis. We find that the water uptake 
process dominates the effective electrical properties. 
This study is important in the context of accurate water 
content prediction for automated irrigation systems in 
sandy type soil.   

 

2.1 Introduction 
 

Understanding root water uptake and associated 
nutrients are critical for crop management (e.g. 
Gregory et al. 2005) but remain a challenging task due 
to the inherent difficulty to collect observations in soils 
(e.g. De Dorlodot et al. 2007). Geophysical monitoring 
of root-zone soil moisture has received growing 
interest in the past decades to tackle this challenge. One 
such method is Electrical Resistivity Tomography 
(ERT), which aims at retrieving the 2-D or 3-D 
distribution of the electrical conductivity (σ) or its 
inverse (electrical resistivity) in the soil from electric 
resistance measurements at discrete electrode locations. 
The σ is then related to the property or state variable of 
interest - for instance, the soil water content, θ, the 
porosity, the electrical conductivity of the soil fluid (σ

𝑤
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), the temperature or the mineral composition 
(Friedman 2005) - through a proper petrophysical 
relationship, e.g. quantifying σ as a function of θ. In 
cropped fields, ERT has been increasingly used for 
monitoring soil water content (Michot et al. 2003; 
Srayeddin and Doussan 2009; Beff et al. 2013; Garré et 
al. 2013b; De Carlo et al. 2015; Brillante et al. 2016; 
Vanella et al. 2018).  More recently, ERT-estimated 
water content was used for phenotyping root systems at 
field scale (Whalley et al. 2017). The authors 
monitored changes in σ of the soil root zone in drying 
conditions at different soil depths, which acted as a 
proxy for root activity. However, the bulk electrical 
conductivity of a vegetated soil potentially containing 
roots, denoted by , not only depends on θ, but also  σ

𝑏𝑢𝑙𝑘
on roots and their impact on soil structure. In some 
field experiments, different petrophysical relations for 
soils with and without roots have been observed 
(Werban et al. 2008; Michot et al. 2016; Ni et al. 2018). 
However, in lysimeter experiments, studies show 
petrophysical function was time invariant despite 
ongoing root growth (Garré et al. 2011).  The Figure 
2.8 highlights that the contrast between  and σ

𝑟𝑜𝑜𝑡
 is a function of plant species, in addition to σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
the soil bulk properties or state variables and indicates 
that roots could have a measurable but variable impact 
on ERT measurements.  

For a given species,  is generally a function of root σ
𝑟𝑜𝑜𝑡

anatomy, which can be related to root age, root order, 
or root diameter. In their study, Anderson and 
Higinbotham (1976), found that older maize root 
segments are electrically more conductive than younger 
roots. Their study was performed on excised root 
segments. They showed that the outer layer of the root 
segment (cortex) has very low electrical resistance (~50 
kΩ) in the radial direction when compared to the axial 
direction (~600 kΩ). By treating cortex and stele as 
concentric parallel conductors, the reported resistances, 
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when converted into conductivities are of the order 
 ~ 0.05 S/m. However, the electrical behavior of σ

𝑟𝑜𝑜𝑡
intact root segments embedded in the soil might be 
different as compared to excised segments. Another 
study by Cao et al. (2010) reported that the root 
electrical resistance could be related to root properties 
such as surface area, number of lateral roots and root 
length. Studies on poplar roots show that  of the σ

𝑏𝑢𝑙𝑘
soil-root medium may increase or decrease with the 
increase in root mass density depending on the age of 
the plant (Al Hagrey 2007; Zenone et al. 2008). Also, 
some studies found a correlation between root 
length/mass density and electrical resistivity obtained 
from ERT (Amato et al. 2009; Rossi et al. 2011). Along 
with root geometrical properties such as root 
length/surface/mass densities, the electrical contrast 
between root and soil also plays a role in influencing 
ERT results. However, it is not clear that how much 
proportion of electrical signature of root present in the 
ERT measurements can be attributed to each of these 
root parameters such as electrical contrast, root 
length/surface/volume densities.   

Beyond the impact of the electrical conductivity of root 
tissues, root-related processes like water uptake, 
exudation or solute uptake will also affect the electrical 
properties of the rhizosphere, i.e. the soil zone close to 
root segments, thereby affecting the -   σ

𝑟𝑜𝑜𝑡
 σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
contrast. Recent ERT experiments on orange orchard 
fields suggest that ERT results are more sensitive to 
root water uptake patterns (Vanella et al. 2018) than to 
the resistive lignified roots. Performing such 
experiments is however costly and time-consuming and 
is difficult to reproduce for various species and soil 
types, hence the need for modeling. Al Hagrey and 
Petersen (2011) previously studied the impact of roots 
on ERT imaging by using a root growth model 
(Wilderotter 2003) but ignored the inherent 
heterogeneity of and . To understand the σ

𝑟𝑜𝑜𝑡
 σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
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effect of root system connectivity and their impact on
, a model where roots are explicitly represented  σ

𝑏𝑢𝑙𝑘
and functional is needed. Explicit root representation 
using an unstructured finite element mesh has been 
studied for water and nutrient uptake processes 
(Wilderotter 2003; Tournier et al. 2015). Here we 
extend it to ERT forward and inverse problem coupled 
to a plant-soil water flow model and a realistic complex 
root system architecture.  

The objective of this chapter is to investigate the direct 
(presence of root segments) and indirect (root water 
uptake) impacts of plant roots on the effective 
soil-plant electrical conductivity.  Specifically, we 
wanted to quantify the effect of soil-root contrast, plant 
growth, and root water uptake on the petrophysical 
relations. 

To achieve this, we developed a coupled 
electrical-hydraulic soil-plant model and applied it to 
generate virtual rhizotron experiments. A rhizotron is a 
thin container (typically around 2 cm x 20 cm x 40 cm) 
filled up with a growing substrate in which plant roots 
develop, which allows the observation of the root 
system architecture evolution and sometimes of the 
substrate water content (Garrigues et al. 2006) (Ahmed 
et al. 2018) and can thus be used to investigate how soil 
heterogeneity affects root growth and uptake (e.g. 
Bauke et al. 2017).  In this study, the soil-root system is 
first modeled with a fine spatial resolution for the roots 
using a 3-D unstructured mesh for the ERT forward 
simulation. The virtual environment allows us to 
account for root architecture, soil water redistribution, 
soil heterogeneity, root-specific electrical property 
along with root growth, and transient transpiration.  

 

2.2 Materials and Methods 
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Our virtual experiment consists of monitoring with 
ERT the changes of electrical conductivity of a 
transpiring Maize plant growing in a thin rhizotron for 
21 days. Root growth, root maturation, and root water 
uptake generate changes in the soil water and electrical 
conductivity field distributions, which will affect ERT 
measurements. Figure 3.1 summarizes the various steps 
described below in a flowchart. First, a simulation of 
root water uptake and root growth of a maize plant in a 
rhizotron is run with a soil-plant water flow model 
(R-SWMS, Javaux et al. 2008), which generates maps 
of soil water distribution (θ) and root architecture 
evolution. Then these distributions are transformed into 
detailed electrical conductivity (σ) maps through 
pedo-physical relations. Third, these distributions are 
used to simulate a virtual ERT measurement to get 
apparent conductivities ( ) or synthetic ERT data. σ

𝑎𝑝𝑝
Fourth, the synthetic ERT data is inverted to assess the 
impact of roots in ERT inversions.  
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Figure 3.1: Flow chart for the simulation of the Virtual 
Rhizotron drying experiment. 
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2.2.1 Soil plant water fluxes 
 

The 2-D root architecture (see Fig. 3.2) was extracted 
from real experiments on a rhizotron with a 21-day old 
Maize using the root image analyzing tool smart root 
(Lobet et al. 2011). We used one root system between 5 
and 21-d old for our simulations. Since the root growth 
was monitored every day, ages were easily assigned to 
each root segment. In these experiments, rhizotrons 
were weighted daily, thereby allowing one to estimate 
averaged transpiration rates.  

The size of the rhizotrons were 22 cm x 2 cm x 42 cm 
(the corresponding reference axes are -11 cm ≤  x ≤ 11 
cm, -1 cm ≤ y ≤ 1   cm, -40 cm ≤ z ≤ 2 cm). We 
considered two soil types: sandy and loamy with 
hydraulic properties represented by Mualem-van 
Genuchten equations (van Genuchten 1980). Hydraulic 
parameters for both soils are from (Carsel and Parrish 
1988). 

The soil-plant water flow model R-SWMS (Javaux et 
al. 2008) was used to estimate the evolution of root 
water uptake, soil water flux, and soil water content 
distributions in the rhizotrons. R-SWMS uses the finite 
element method on a regular uniform grid to solve 
Richards equation to simulate three-dimensional water 
flow in the soil:  

           ∂θ
∂𝑡 = ∂

∂𝑥 . 𝐾 ∂ℎ
∂𝑥( ) + ∂

∂𝑦 . 𝐾 ∂ℎ
∂𝑦( ) + ∂

∂𝑧 . 𝐾 ∂(ℎ+𝑧)
∂𝑧( ) − 𝑆𝑖𝑛𝑘

(3.1) 

where  is the volumetric soil water content [cm³ cm-³], θ
 the matrix head [cm],  the isotropic hydraulic ℎ 𝐾

conductivity [cm d-1],  is a sink term for root water 𝑆𝑖𝑛𝑘
uptake [cm3 cm-3 day-1], and ,  and  are the spatial  𝑥 𝑦, 𝑧
coordinates and the dot represents divergence. The 
Sink term is estimated based on a weighted averaged of 
the uptake fluxes in each soil voxel. 
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The water fluxes in and towards the roots are 
calculated with a finite difference method in the root 
system network based on soil and root water potential 
distributions and transpiration rate. The transpiration 
rate increased with root growth. Each root segment is 
characterized by its radial and axial hydraulic 
properties, which evolve with the root segment age. 
Experimentally measured maize root hydraulic 
conductivities were used in the R-SWMS model, in 
which they are age and type-dependent (Doussan et al. 
2006; Couvreur et al. 2012). The total root length per 
unit volume in the R-SWMS simulation was 0.06, 0.22, 
0.66, 1.1, and 1.61 cm/cm3 at day 5, 10, 15, 18 and 21, 
respectively. In the typical field, mature root density 
reaches values of 1cm/cm3, especially in the topsoil 
(Gao et al. 2010).  

Root growth was simulated by updating the root system 
architecture at each time step between the beginning 
(day 5) and the end (day 21) of the simulation. The 
same architecture evolution was used for sand and 
loam. We imposed a sinusoidal day/night transpiration 
as root boundary condition with daily transpiration 
progressively increasing between the beginning (day 5, 
5 cm³) and the end of the simulation (day 24, 30 cm³), 
which corresponds to transpiration rates experimentally 
observed in greenhouse experiments for similar plant 
size (Lobet et al. 2011).  

The initial soil condition was a hydrostatic equilibrium 
with a saturated soil at the bottom of the rhizotron 
(corresponding to experimental conditions) and root 
water uptake was the only source/sink term that 
allowed the total water content to change.  

We ignored root exudation and assumed that solute 
uptake was proportional to soil solute concentration 
(i.e. passive uptake (Hopmans and Bristow 2002), 
allowing us to assume a uniform solute concentration 
distribution. 
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Figure 3.2: Root architectural evolution shown at different 
times. 
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2.2.2 Electrical properties of plant root tissues and 
soils 
 

We used the measured electrical properties of Maize 
roots as described in Chapter 3. We used the variations 
of   as a function of segment distance from the σ

𝑟𝑜𝑜𝑡
root collar (see Fig. 3.3). The digital maize roots in our 
simulation are around three weeks old while the brace 
roots develop only after several weeks in a real maize 
plant; hence, the brace root data are not included in our 
model. Figure 3.3 shows the experimental data of  σ

𝑟𝑜𝑜𝑡
as a function of the root age for the maize plant. We 
observe a gradual increase in  of intact maize root σ

𝑟𝑜𝑜𝑡
segments, as the segment distance from root collar 
increased. The black solid curve of Figure 3.3 
represents the root electrical property incorporated in 
our virtual rhizotron simulations: 0.0154 <

[S/m]. The polynomial fit in Figure 3.3  σ
𝑟𝑜𝑜𝑡

< 0. 03 
is given by: 
 
        

   σ
𝑟𝑜𝑜𝑡

=  − 5. 5 * 10−5 𝑑𝑟𝑐2( ) + 0. 0018𝑑𝑟𝑐 + 0. 0137
(3.2) 
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Figure 3.3: Measurement data on Maize roots:  vs σ
𝑟𝑜𝑜𝑡

distance from the root collar. The quadratic fit is shown as a 
solid line while measurement data is represented at discrete 
locations as circles (primary root).  

 

To transform soil water content maps into electrical 
conductivity maps, we used Equation 2.8. Sand 
typically has very low surface conductivity (

while for loam, we assume  to be ~10−5 𝑆/𝑚) σ
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

0.015 S/m (Brovelli and Cassiani 2011). For Archie’s 
fitting parameters, we use the typical values d = 2 and 
m = 1.3 (e.g. Werban et al. 2008).   , in the σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
rhizotron also depends on the electrical conductivity of 
the nutrient solution ( ) used to grow plants. We σ

𝑤
assumed  to be 0.2 S/m and chose n as 0.35 (sand) σ

𝑤
and 0.435 (loam) to be in the same range as the other 
observed petrophysical models (Fig. 2.6). In the 
following sections, we will refer to   as the σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
soil bulk electrical conductivity (with  and σ

𝑏𝑢𝑙𝑘−𝑙𝑜𝑎𝑚
 to the specific soil types) when no roots are σ

𝑏𝑢𝑙𝑘−𝑠𝑎𝑛𝑑
present and   will be used for studies or datasets σ

𝑏𝑢𝑙𝑘
where both roots and soil are present. 

Note that extremely low value of conductivity in the 
sand (~5x10-9 S/m) can arise and would need additional 
mesh refinement in the finite element mesh in regions 
where there are large conductivity gradients to obtain 
an accurate result. To avoid that and to maintain 
accuracy, we set a limit of 0.0001 S/m as the lowest 
possible conductivity value.  

2.2.3 Meshing the root architecture 
 

For the electrical simulation, we generated finite 
element meshes for the specific root geometry.  In the 

84 
 



finite element mesh, either a  or ( ) value σ
𝑟𝑜𝑜𝑡

σ
𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙

θ
is assigned to each element (tetrahedron). The maize 
primary roots in our simulation have a mean radius (r~ 
0.025 cm) which is small compared to the dimensions 
of rhizotron (20 x 1 x 42 cm), requiring a very high 
spatial resolution for roots in the forward finite element 
mesh (FFEM).  

To generate a 3-D root resolved mesh with high spatial 
resolution but manageable computational load, we 
needed to simplify the root system. First, we removed 
extremely fine root hairs and root branches that were 
below 0.01 cm in radius assuming that such roots have 
a negligible effect on the voltage measurements. Also, 
nearly parallel secondary root-branches with the 
distance between them less than 2 times the root radius 
were combined and treated as a single branch. This 
procedure reduces the total root length in the finite 
element mesh as compared to the real plant. Hence to 
preserve the root volume (which we assume to be the 
most important factor at this stage) in the finite element 
mesh with the actual measurements, we had to increase 
the mean radius of root segments in the finite element 
mesh. Also, we discretize the root segment radius in 
the finite element mesh into two possible values, where 
all primary roots have one radius, while all secondary 
roots have half the radius of primary roots while in 
reality, each segment had unique radii. The 
above-mentioned simplification only affects the 
electrical forward model (roots are explicit 3-D 
structures in electrical mesh) and not the water flow 
model (roots are treated as a network having no volume 
in the water flow grid), where we used digitized root 
having identical features (radii and no. of segments) as 
in the rhizotron experiments.  

 We compare the time evolution of root volume, total 
root length, and mean root radius in the finite element 
mesh with the actual plant in Figure 3.4. The root 
volume in the finite element mesh matches with the 
real plant (Fig. 3.4-a). The total root length in the finite 
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element mesh matches the measurements only at a 
younger age (Fig. 3.4-b). At later ages, we lose around 
50% of root length due to root simplification 
procedure. The simplified root architecture represents 
segments with a mean radius as shown in Figure 3.4-c. 

The finite element model of the simplified root 
architecture at age 5 is shown in Figure 3.5. The 3-D 
finite element mesh in Figure 3.5-b was generated from 
the simplified root architecture using Gmsh software 
(Geuzaine and Remacle 2009). Figures 3.5-a, 3.5-b 
represent the simplified architecture at age 5 while 
Figure 3.2 represents the original architecture from a 
real plant at different times. Comparing these two 
figures at age 5, we see that the overall skeleton of the 
root system and its volume is preserved while its radii 
were modified to meet the computational speed. We 
assumed that root mass density (or root volume) plays 
a bigger role than root length density in affecting the 
electrical current flow and hence we prioritized 
preserving the root volume and to some extent the 
architecture rather than preserving the actual root 
length and radius, which were modified in the mesh 
due to merging of nearby segments. Also, preserving 
root radius and root length requires a very refined grid 
and hence computationally intensive.     
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Figure 3.4: a) root volume vs root age as simulated in the 
finite element mesh (red squares) or light transmission 
image (black circles), b) root length vs root age as simulated 
in the finite element mesh (red squares) or measurements 
(black circles), and c) mean r 
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Figure 3.5: Finite element model of virtual rhizotron (with 
mesh hidden) at a) age 5, b) age 21 and c) Top view. The 
root tetrahedrons are shown in red while green dots 
represent the point electrode locations and the blue line 
connecting green dots represents the line electrodes and d) A 
section of forwarding finite element mesh at age 5. 
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2.2.4 Electrical resistivity forward modeling 
 

We used the finite-element based software EIDORS 
(Adler and Lionheart 2006) to solve the ERT forward 
problem for the generated finite element meshes. The 
ERT forward problem solves for the resulting voltages 
of an electric current of density, , injected into a 𝐽

𝑒

→

medium of electrical conductivity (σ) given the proper 
boundary conditions. The equations governing the 
physics of electrical resistivity forward modeling is 
derived from Maxwell’s equations for a DC. Consider a 
region, Ω bounded by its boundary, . The electric  𝑑Ω
field  in  is related to the scalar electric potential  𝐸

→
Ω ϕ

through the gradient operation, . Applying   𝐸
→

=− ∇ϕ
the conservation of electric charge for a source free 
region , and Ohm’s law,   , we ,  ∇.  𝐽

𝑒

→
= 0 𝐽

𝑒

→
= σ𝐸

→

obtain the governing equation for ERT inside the 
medium (also known as Laplace equation):                                                             

                                                                           ∇.  (σ∇ϕ) = 0
(3.3) 

The injected current density  is specified by the 𝐽
𝑒

→

Neumann boundary conditions at the current injecting 
electrode locations usually located in :  𝑑Ω

  
  σ∇ϕ. 𝑛

^
= σ ∂ϕ

∂𝑛
^ =  𝐽

𝑒

→
  𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 − 𝐽

𝑒

→
 𝑜𝑛 𝑠𝑖𝑛𝑘 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 0,  𝑒𝑙𝑠𝑒 𝑤ℎ𝑒𝑟𝑒 { }

(3.4) 

The voltage measuring electrodes dictate the Dirichlet 
boundary conditions: 

                                                                                 ϕ + 𝑍
𝑒

𝐽
𝑒

→|||
||| = 𝑉

𝑒

(3.5) 
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where,  is the contact impedance of the voltage 𝑍
𝑒

measuring electrodes (assumed to be 0.01 Ohms in this 
work), is the current density given by   𝐽

𝑒

→
 𝐽

𝑒

→
 = σ ∂ϕ

∂𝑛
^

and  is the voltage measured in volts, is the unit 𝑉
𝑒

𝑛
^
 

normal perpendicular to . Equations 3.3 to 3.5 are 𝑑Ω
the governing equations for the ERT forward problem.   

The electrical resistivity forward problem seeks voltage 
or apparent conductivity data by numerically solving 
Equations (3.3 - 3.5) for a known electrical 
conductivity distribution. The voltage data (  can be 𝑉

𝑒
)

converted to apparent conductivity data, i.e. that of an 
equivalent homogeneous medium ( , with an σ

𝑎𝑝𝑝
)

appropriate geometric factor of the electrodes. The 
now becomes a crude measure of actual electrical σ

𝑎𝑝𝑝
 

conductivity distribution; that we had in the forward 
problem. In ERT inverse problems, we aim at 
reconstructing an estimate of the electrical conductivity 
distribution within the soil-root domain from orσ

𝑎𝑝𝑝
  𝑉

𝑒
. 

The 3-D electrical conduction model for the rhizotron 
(same as the water uptake model in R-SWMS) had 
overall dimension: -11 < x < 11 cm, -1 < y < 1 cm, -40 
< z < 2 cm. For scaling comparison between 3-D and 
2-D, the electrical simulation was repeated in 2-D (Y = 
0) having a similar dimension as 3-D in x and z axes.  

2.2.5 Apparent and effective electrical conductivities 
 

A point electrode model (Hanke et al. 2011) with a 
total number of 50 electrodes and different 
measurement schemes are used to compute the forward 
response (Fig. 3.5-a). All the electrodes are located at 
the boundary of the computational domain with a 
similar set-up to the one in Weigand and Kemna 
(2017). In the finite element mesh, either a  or σ

𝑟𝑜𝑜𝑡

90 
 



( ) value is assigned to each element σ
𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙

θ
(tetrahedron). 

To compute the apparent conductivity from the 
voltages, we first run forward calculation for the 
medium with homogeneous conductivity (σ = 1 S/m), 
on the same mesh as the soil-root medium and obtain 
the numerical geometric factors for the given electrode 
configuration. The numerical geometric factors here is 
nothing but the ratio of injected current to the measured 
voltage. These numerical geometric factors obtained 
for the homogenous medium (σ = 1 S/m) is then used 
to convert the voltages into apparent conductivity (

 for the given virtual data.  σ
𝑎𝑝𝑝

)

We computed apparent conductivity data set for two 
scenarios: 1) medium having soil and root system 
included  and 2) medium having only the (σ

𝑎𝑝𝑝−𝑟𝑜𝑜𝑡
)

soil . The second scenario where the data  (σ
𝑎𝑝𝑝−𝑠𝑜𝑖𝑙

)
without considering root segments  were (σ

𝑎𝑝𝑝−𝑠𝑜𝑖𝑙
)

realized by obtaining the forward data on the soil water 
content map (converted to electrical conductivity) only, 
without considering the root electrical properties. The 
difference in  and  will indicate the σ

𝑎𝑝𝑝−𝑟𝑜𝑜𝑡
σ

𝑎𝑝𝑝−𝑠𝑜𝑖𝑙
specific impact of root segments on ERT 
measurements. We define a variable describing the 
relative change in due to the presence of root σ

𝑎𝑝𝑝
 

segments given by:  

                                                δσ
𝑎𝑝𝑝−𝑟𝑠

  =  
σ

𝑎𝑝𝑝−𝑟𝑜𝑜𝑡
 − σ

𝑎𝑝𝑝−𝑠𝑜𝑖𝑙

σ
𝑎𝑝𝑝−𝑠𝑜𝑖𝑙

|||
||| 

(3.6) 

Our ERT injection scheme (comprising of 9742 
quadrupoles from 50-point electrodes) consisted of a 
combination of various inbuilt options available 
(‘mk_stim_patterns.m’) in EIDORS software: 
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a) op-op: opposite drive current injection and opposite 
drive potential measurement comprising of 2400 
quadrupoles. 

b) op-ad: opposite drive current injection and adjacent 
drive potential measurement comprising of 2300 
quadrupoles. 

c) ad-op: adjacent drive current injection and opposite 
drive potential measurement comprising of 2300 
quadrupoles. 

d) ad-ad: adjacent drive current injection and adjacent 
drive potential measurement comprising of 2350 
quadrupoles. 

e) dip-dip: dipole current injection and dipole 
potential measurement comprising of 392 
quadrupoles. 

Similarly,  measured between the line electrodes at σ
𝑎𝑝𝑝

Y=0 plane (blue lines in Fig. 3.5) of each wall (top, 
bottom, left and right) gives effective electrical 
conductivity ( ) in the vertical and horizontal σ

𝑒𝑓𝑓
direction denoted by  and .  σ

𝑒𝑓𝑓𝑍
 σ

𝑒𝑓𝑓𝑋

The computation of (  and ) is repeated σ
𝑒𝑓𝑓

 σ
𝑒𝑓𝑓𝑍

 σ
𝑒𝑓𝑓𝑋

for two scenarios: 1) medium having soil and root 
system included denoted by , and 2) medium  σ

𝑒𝑓𝑓−𝑟𝑜𝑜𝑡
having only the soil as if the roots had the same 
electrical conductivity than the surrounding soil, 
denoted by .   σ

𝑒𝑓𝑓−𝑠𝑜𝑖𝑙

The difference in  and  will indicate σ
𝑒𝑓𝑓−𝑟𝑜𝑜𝑡

σ
𝑒𝑓𝑓−𝑠𝑜𝑖𝑙

the specific impact of root segments on effective 
property. Similar to Equation 3.6 we define a parameter 
describing the relative change in due to the σ

𝑒𝑓𝑓
 

presence of root segments given by: 

                                                 δσ
𝑒𝑓𝑓−𝑟𝑠

  =  
σ

𝑒𝑓𝑓−𝑟𝑜𝑜𝑡
 − σ

𝑒𝑓𝑓−𝑠𝑜𝑖𝑙

σ
𝑒𝑓𝑓−𝑠𝑜𝑖𝑙

|||
||| 

(3.7) 
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2.2.6 Root electrical signature terms 
 

The relative change terms are given in Equations 3.6 
and 3.7, that is,  averaged over two δσ

𝑒𝑓𝑓−𝑟𝑠
perpendicular directions (denoted by ) and 〈δσ

𝑒𝑓𝑓−𝑟𝑠
〉

 averaged over all the 9742 quadrupoles δσ
𝑎𝑝𝑝−𝑟𝑠

denoted by  are used as a parameter to assess  〈δσ
𝑎𝑝𝑝−𝑟𝑠

〉
the impact of roots in the ERT forward data. We also 
use  computed for current injection between δσ

𝑎𝑝𝑝−𝑟𝑠
electrodes 1 and 9 and voltage measurement between 4 
and 6 situated at the surface of rhizotron (Fig. 3.5) 
denoted by , due to its practical feasibility  δσ

𝑎𝑝𝑝−𝑟𝑠
− 𝑆

for an extension to field studies. 

Hence, we will refer to and  as the 〈δσ
𝑒𝑓𝑓−𝑟𝑠

〉 〈δσ
𝑎𝑝𝑝−𝑟𝑠

〉
root electrical signature term. We also define a term 
describing the electrical conductivity contrast between 

 and , denoted by C, computed by σ
𝑟𝑜𝑜𝑡

 σ
𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙

subtracting the mean of  from mean of . σ
𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙

 σ
𝑟𝑜𝑜𝑡

Here, C is a single number, which is a function of root 
age and soil type.  

First, we generate additional synthetic data by 
increasing the mean root radius by a factor of two and 
three (increasing the root volume by four and nine). 
The original mean radius of root segments in the finite 
element mesh that matches with the experimental 
volume was shown in Figure 3.4-c (red squares).  The 
thickening of root increases the root volume while 
keeping the root length intact. With seven different root 
ages (seven different root lengths, see Fig. 3.2) and 
three different root radii: actual (Fig. 3.4-c), double of 
actual and triple of actual denoted by r, 2r, and 3r, we 
have twenty-one different radii/volume.  
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We use these data to achieve the objectives of this 
paper, i.e. to find simulation-based answers to the 
specific questions as follows: 

1) Does the root water uptake pattern have an impact on 
root electrical signature terms? 

To answer the above question, we compute 〈δσ
𝑒𝑓𝑓−𝑟𝑠

〉 
as a function of root age in two different mediums: a) A 
medium where soil electrical conductivity is dictated 
by root water uptake pattern (Fig. 3.7) and b) A 
medium having a homogeneous soil electrical 
conductivity (without root water uptake pattern) whose 
value is the spatial average of root water uptake 
scenario. The difference in these two scenarios will 
give us insight into the impact of root water uptake on 
electrical signatures of root segments. 

2) How does root length density, root volume density, root 
age, and root radius relate to the root electrical 
signature terms?  

We assess the dependency of root signature terms for 
each of the unique cases that correspond to different 
root variables such as length, ages, volume, surface 
area, electrical conductivity contrast, and radii.  We 
investigate the multivariate dependency among these 
variables by correlation analysis.  

2.2.7 Upscaled electrical properties 
 

To get an insight on how a rooted soil might differ from 
bare soil electrical properties, we divided the FFEM 
into smaller blocks having dimension: 2 cm x 1 cm x 2 
cm, and compute the volume-weighted arithmetic and 
harmonic mean of electrical conductivity within each 
block: 

                                                                   (3.8) 〈σ
𝑎𝑣𝑔−𝑎𝑚

〉 = 𝑖
∑𝑉

𝑖
σ

𝑖

𝑖
∑𝑉

𝑖
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                                                       〈σ
𝑎𝑣𝑔−ℎ𝑚

〉 = 𝑖
∑ 𝑉

𝑖
σ

𝑖( )−1

𝑖
∑𝑉

𝑖
−1

⎛

⎝

⎞

⎠

−1

(3.9) 

where the  and  are the volume and electrical 𝑉
𝑖

σ
𝑖

conductivity of ith tetrahedron within an averaging 
block. We also computed the volume-weighted 
arithmetic mean of water content: 

                                                                            (3.10) 〈θ〉 = 𝑖
∑𝑉

𝑖
θ

𝑖

𝑖
∑𝑉

𝑖

 

The  assumes that the finite elements in each 〈σ
𝑎𝑣𝑔−𝑎𝑚

〉
averaging block are electrically connected in series 
while the assumes the elements to be in 〈σ

𝑎𝑣𝑔−ℎ𝑚
〉 

parallel. In reality, we expect the true  to be in σ
𝑏𝑢𝑙𝑘

between the  and  , depending on 〈σ
𝑎𝑣𝑔−𝑎𝑚

〉 〈σ
𝑎𝑣𝑔−ℎ𝑚

〉
the structural properties of root and soil elements. The 
relation between the collection of averaged data points 
(〈θ〉, at every averaging block 〈σ

𝑎𝑣𝑔−𝑎𝑚
〉,  〈σ

𝑎𝑣𝑔−ℎ𝑚
〉) 

and at all time (day 5 to 21 will then approximately 
mimic the impact of roots at a block-scale on σ

𝑏𝑢𝑙𝑘
 ,  

when compared to Archie’s law applied in soils only (
). We also investigate the relation between σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
effective properties (  and ) and σ

𝑒𝑓𝑓𝑍
 σ

𝑒𝑓𝑓𝑋
volume-averaged (at rhizotron scale) water content at 
different times. 

 

2.3 Results 
 

In this section, we discuss the results obtained from the 
coupled water-flow and electrical model. First, we 
describe the outputs of root water uptake simulations in 
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terms of electrical conductivity. Then we discuss the 
impact of roots on petrophysical relation and root 
signatures in ERT forward simulations.  

2.3.1 Electrical conductivity contrasts derived from 
root water uptake simulations 
 

Simulations show that the relative θ distribution 
patterns depend on the soil type (Figs. 3.6-a, b). In 
loam, the normalized water saturation never drops 
below 0.2 even on day 21 whereas, in the sand, it 
reaches almost zero (0.00034) on day 21. On the same 
day, when the water depletion is the highest, there are 
still maximum water saturation values of 0.4 in sand 
and 0.6 in loam. 

In the sand, the electrical conductivity of roots is σ
𝑟𝑜𝑜𝑡

  
always larger than the one of the soils  (Fig.  σ

𝑏𝑢𝑙𝑘−𝑠𝑎𝑛𝑑
3.6-c). For loam, however, we see that the contrast 
changes with time (Fig. 3.6-d). Initially,   is σ

𝑏𝑢𝑙𝑘−𝑙𝑜𝑎𝑚
larger than , at intermediate times (day 10, 12,  σ

𝑟𝑜𝑜𝑡
 

15), at top of rhizotron,    is equal to  σ
𝑏𝑢𝑙𝑘−𝑙𝑜𝑎𝑚

σ
𝑟𝑜𝑜𝑡

and at bottom of rhizotron,   is larger than σ
𝑏𝑢𝑙𝑘−𝑙𝑜𝑎𝑚

 and at the end final times (day18 and 21), at some σ
𝑟𝑜𝑜𝑡

regions    is less than . On day 21, where σ
𝑏𝑢𝑙𝑘−𝑙𝑜𝑎𝑚

σ
𝑟𝑜𝑜𝑡

the water depletion is highest, the water saturation 
varies from 3e-4 to 0.4 in sand and 0.2 to 0.6 in loam. 
When translated into electrical conductivity, in sand 

 varies from 5e-9 to 0.0087 S/m and in loam, σ
𝑏𝑢𝑙𝑘−𝑠𝑎𝑛𝑑

 varies from 0.0057 to 0.0407 S/m. The σ
𝑏𝑢𝑙𝑘−𝑙𝑜𝑎𝑚

extremely low value of conductivity in the sand (~5e-9 
S/m) will need additional mesh refinement in the 
FFEM at regions where there are huge conductivity 
gradients to obtain an accurate result. To avoid that and 
to maintain accuracy, we find elements, which have 
conductivity lower than 0.0001 S/m and assign such 
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elements, the conductivity equal to 0.0001 S/m. Hence, 
in electrical simulation, the lowest possible 
conductivity is 0.0001 S/m. We show the minimum and 
maximum values of  for sand and loam σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
simulation along with Maize root electrical 
conductivity range at different times in Figure 3.7.  

Since electric current flow depends on the gradient of 
σ-distribution, the effect of roots in ERT experiments 
will be greater where there is higher  σ

𝑟𝑜𝑜𝑡
− σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
 

contrasts and most importantly, it is time-dependent 
(Fig. 3.7). Besides, the density of roots plays a role in 
terms of  contrasts, for instance at day σ

𝑟𝑜𝑜𝑡
− σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
 

22, the upper part of the root system is more 
conductive than in the upper part of the σ

𝑏𝑢𝑙𝑘−𝑙𝑜𝑎𝑚
 

rhizotron and also reflects higher root volume than at 
initial times. Therefore, at later times (Fig. 3.6-d, day 
22), the ERT estimate of water content in the upper 
region could be misleading due to a stronger root 
influence on . σ

𝑏𝑢𝑙𝑘
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Figure 3.6: Volumetric water saturation distribution in a) 
sand and b) loam, and its corresponding σ-maps in c) sand 
and d) loam at Y = 0 plane at different times. 
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Figure 3.7: Variability of  in the rhizotron at σ
𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙

different times for sand and loam. The vertical bars at 
various times represent the minimum and maximum values 
of . The circle represents the arithmetic mean of  σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
 in the finite element mesh and is later used for σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
homogeneous soil scenarios to compare with the root water 
uptake scenario. The gray shading represents . σ

𝑟𝑜𝑜𝑡

2.3.2 The impact of roots on petrophysical 
relationships 
 
The harmonic and arithmetic block-wise averaged 
electrical conductivity data points and their 
corresponding water content at various times are shown 
as vertical bars in Figure 3.8 (a and b) along with the 
Archie petrophysical relation.  The upper limit of the 
vertical bar represents the maximum of   and 〈σ

𝑎𝑣𝑔−ℎ𝑚
〉

 while the lower limit represents their 〈σ
𝑎𝑣𝑔−𝑎𝑚

〉
minimum. For each block (4 cm³), the actual effective 
small scale (centimeter scale) conductivity is supposed 
to be located within this range.  
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At a larger rhizotron spatial scale, we illustrate the 
relationship between (  ,  ) and σ

𝑒𝑓𝑓𝑍
 σ

𝑒𝑓𝑓𝑋
volume-averaged water content at various times in 
Figure 3.8 (a and b). Both effective properties at 
rhizotron scale and averaged properties at a small block 
scale deviate from Archie’s curve and the deviation 
trend is different as seen from Figure 3.8 (a and b). 
Also, the difference between the horizontal and vertical 
effective properties  and  indicate σ

𝑒𝑓𝑓𝑋
σ

𝑒𝑓𝑓𝑍
macro-scale anisotropy. For both soil types, the derived 
effective properties  and  lies below Archie’s σ

𝑒𝑓𝑓𝑋
σ

𝑒𝑓𝑓𝑍
curve defined at the lower scale due to the dry soil 
acting as a barrier to the electrical current flow, thereby 
decreasing the effective . The vertical effective  σ

𝑏𝑢𝑙𝑘
property deviates more when compared to horizontal 
direction due to horizontal layering that develops in the 
electrical conductivity distribution due to root water 
uptake (see Figs. 3.8-a and b), which thereby affects 
current more in the vertical direction than in horizontal 
direction. For the loam medium, the anisotropic effect 
is less when compared to sand. ERT obtained electrical 
conductivity data are known to have a spread around 
the petrophysical model fitted curve as observed by 
Beff et al. (2013) and Garré et al. (2011). Our 
averaging results in Figure 3.8 (a and b) hints that this 
deviation of electrical conductivity data around the 
petrophysical model could be due to the presence of 
root segments. 
 
In Figures 3.8-c and d, we show the deviations of  σ

𝑒𝑓𝑓𝑍
from Archie’s curve in sand and loam for three 
different scenarios: a) root water uptake with root 
segments (blue line), b) root water uptake without root 
segments (green line) and c) homogeneous soil 
(without root water uptake) with root segments (red 
line). For the homogeneous soil case (without root 
water uptake pattern), we use the mean of  for σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
soil. As the root segment, electrical conductivity values 
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are generally higher than the dry soil, we see that 
deviation is positive when roots and not uptake are 
considered (red lines in Figs. 3.8-c and d) whereas, 
with root water uptake, the deviation is negative.  
 
We find that the impact of root water uptake only is a 
bit bigger than the one of the root segment electrical 
conductivity (respectively green and red lines in Figs. 
3.8-c and d). However, the additional impact of the 
presence of roots when water uptake is considered is 
negligible (blue line), demonstrating that the root water 
uptake pattern is then the main driver of these 
deviations. The presence of root inside of the depletion 
zone only marginally affects the electrical signature. 
 
On a small scale, removing root segments results in a 
perfect agreement between block-wise averaged data 
and Archie’s curve (not shown here) as the difference 
between the two averages in Figures 3.8 (a and b) is 
only due to root segments. This is because at block 
scale there is no significant water content heterogeneity 
present and thus averaged water content and averaged 
electrical conductivity (without roots) follow Archie’s 
curve. At large scale though, the patterns generated by 
the water uptake generate more nonlinearities and the 
averaged water content does not relate anymore to 
effective properties dictated by Archie petrophysical 
relation.  
 
The rhizotron scale, bulk electrical conductivity 
deviates from Archie’s law quite differently when 
compared to the averaged data at a smaller scale (Fig. 
3.9).  This can be understood as the impact of soil 
heterogeneity playing a bigger role in influencing the 
bulk property at large scale whereas, at 
centimeter-scale (2 cm x 2 cm), the root density plays a 
major role in the deviating the bulk property from bare 
soil petrophysical relation ( ). This illustrates σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
how the relationship between θ and  is scale  σ

𝑏𝑢𝑙𝑘
dependent.  
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Figure 3.8: Comparison of Archie’s law ( ) with σ
𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙

block wise averaged electrical conductivity (〈θ〉 vs 〈σ
𝑎𝑣𝑔−ℎ𝑚

〉, 〈 〉) and rhizotron scale effective electrical σ
𝑎𝑣𝑔−𝑎𝑚

conductivity in two perpendicular directions (  σ
𝑒𝑓𝑓𝑋

, σ
𝑒𝑓𝑓𝑍

)

in the sand (a) and loam (b). The error bar represents the 
difference between  and . The water 〈σ

𝑎𝑣𝑔−𝑎𝑚
〉  〈σ

𝑎𝑣𝑔−ℎ𝑚
〉

content corresponding to  and  were obtained by σ
𝑒𝑓𝑓𝑋

σ
𝑒𝑓𝑓𝑍

taking volumetric average of the whole rhizotron. The 
deviation of from  as a function of root σ

𝑒𝑓𝑓𝑍
 σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙

volume for three different scenarios in c) sand and d) loam. 
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Figure 3.9: The deviation of effective and averaged 
conductivities from  as a function of water content σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
in: a) sand and b) loam. 

2.3.3 Root signatures in ERT forward simulations 
with point electrodes 

 

In Figures 3.10 and 3.11, we show the dependence of 
 on different stimulation schemes (rows) and δσ

𝑎𝑝𝑝−𝑟𝑠
root volume (columns). Generally, we see that  δσ

𝑎𝑝𝑝−𝑟𝑠
is twice as large in the sand medium as compared to 
loam. Thus, under given conditions, root segments are 
expected to affect ERT measurements more in the sand 
medium. For the given mean radius, r ~ 0.025 cm, most 
of the measurement in the sand have  around 1 δσ

𝑎𝑝𝑝−𝑟𝑠
% but as we double the radius (i.e., increase the volume 
by 4 times) the no. of measurements having  δσ

𝑎𝑝𝑝−𝑟𝑠
greater than 1% increases. Notice the shifting of 
histogram plots to the right side which is more clearly 
evident for op-op stimulation (first row of Fig. 3.10-b) 
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as we increase the radius from r to 2r and 3r. For 
tripling the radius (i.e. increasing the volume by 9 
times) the  can exceed 10% in sand medium, δσ

𝑎𝑝𝑝−𝑟𝑠
which is significant. By comparing Figures 3.10 and 
3.11, we could say that in loam,  is much δσ

𝑎𝑝𝑝−𝑟𝑠
lower and most measurements for r~0.025 cm lie 
below 1%.  Only when we double or triple the radius, 
few measurements shift to 1 to 10% band (see δσ

𝑎𝑝𝑝−𝑟𝑠
 

Fig. 3.11-b). Among different stimulation schemes 
chosen, we see that op-op scheme is most sensitive to 
root presence having the largest  signal. For δσ

𝑎𝑝𝑝−𝑟𝑠
sand, some measurements in the op-op scheme can 
reach up to 30% in  for radius = r and up to δσ

𝑎𝑝𝑝−𝑟𝑠
100% for radius = 2r and 50% for radius = 3r while in 
loam it never reaches above 20% (see Figs. 3.10-a and 
3.11-a: column-wise).  
 
For sand medium, except for op-op scheme, (see Fig. 
3.10-b: rows 2 to 5) we observe that the histogram 
amplitudes at age 5 (red) has a negative slope (i.e. 
declining amplitude with increasing ) and  δσ

𝑎𝑝𝑝−𝑟𝑠
notice the change in histogram shape as root system 
ages (red to green and green to blue). We see that 
histogram amplitudes start with a negative slope at age 
5 and are nearly flat at age 15 and have a positive slope 
(rising histogram amplitude) at age 21 forming a 
U-shaped histogram amplitude pattern as we move 
from age 5 to 15 to 21. However, in loam (Fig. 3.11-b: 
rows 2 to 5), as root system ages, histogram amplitudes 
remain negatively sloped (declining histogram 
amplitude with increasing ).  δσ

𝑎𝑝𝑝−𝑟𝑠

The apparent conductivity measured from ERT has 
contributions not only from soil water content but also 
from root segments. We characterized the root 
contributions in Figures 3.10 and 3.11 by defining

. To minimize the impact of roots on , we  δσ
𝑎𝑝𝑝−𝑟𝑠

 σ
𝑎𝑝𝑝

must carefully choose the stimulation scheme such that 
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it gives the lowest  but they also mean lower δσ
𝑎𝑝𝑝−𝑟𝑠

sensitivity in the middle region of the rhizotron. 
Although for most measurement, is around 1 δσ

𝑎𝑝𝑝−𝑟𝑠
 

to 10%, they could get amplified in the final ERT 
inversion results due to the ill-posed nature of the ERT 
inversion problem (Günther et al. 2006). Thus an error 
in forward  could get multiplied in the final water σ

𝑎𝑝𝑝
content estimate obtained by the inversion program and 
is dependent on inversion algorithm and regularization 
scheme used (Yang and LaBrecque 1998).  

 

 

                               

Figure 3.10: a)  in the sand medium at age 5 (red), δσ
𝑎𝑝𝑝−𝑟𝑠

age 15 (green), and age 21 (blue) as a function of 
measurement index for different stimulation schemes 
(row-wise) and increasing root segment radius 
(column-wise). Here N is the total number of quadrupoles in 
a particular stimulation scheme as given in Table 4.2-b) 
Histogram of percentage  in the sand medium for δσ

𝑎𝑝𝑝−𝑟𝑠
different stimulation schemes (row-wise) and increasing root 
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segment radius (column-wise). Here r is 0.025 cm (radius of 
root segment corresponding to original root volume). 

 

 

 

 

 

 

 

 

Figure 3.11: a)  in loam medium at age 5 (red), age δσ
𝑎𝑝𝑝−𝑟𝑠

15 (green), and age 21 (blue) as a function of measurement 
index for different stimulation schemes (row-wise) and 
increasing root segment radius (column-wise). Here N is the 
total number of quadrupoles in a particular stimulation 
scheme as given in Table 4.2-b) Histogram of percentage 

 in loam medium for different stimulation scheme δσ
𝑎𝑝𝑝−𝑟𝑠
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(row-wise) and increasing root segment radius 
(column-wise). Here r is 0.025 cm (radius of root segment 
corresponding to original root volume).     

 

 

 

 

 

 

2.3.4 Root signatures in ERT forward simulations  
 

In Figure 3.12, we compare ,   and 〈δσ
𝑎𝑝𝑝−𝑟𝑠

〉 〈δσ
𝑒𝑓𝑓−𝑟𝑠

〉
,  with the ratio of root to soil volume as a percentage. 
They show a very high correlation both in sand and 
loam (r > 0.8). In general, the impact of roots in the 
sand was greater than in loam, as seen by its higher 
slope. 
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Figure 3.12: Relative change in effective conductivity 
resulting in root segments compared with soil only (

, in %) vs. root volume/soil volume ratio (%) 〈δσ
𝑎𝑝𝑝−𝑟𝑠

〉
(black squares) in a) sand and b) loam. Relative change in 
apparent conductivity from root segments compared with 
soil only ( ) vs. root volume/soil volume ratio (%) δσ

𝑎𝑏𝑚𝑛−𝑟𝑠
(black squares) in c) sand and d) loam.  The red line 
represents the zero-intercept-constrained polynomial fit. 
In Figure 3.13, we examine the correlation of root 
electrical signature terms such as a) -S δσ

𝑎𝑝𝑝−𝑟𝑠
computed using surface point electrodes 1, 4, 6, and 9, 
b) (quadrupole averaged apparent root 〈δσ

𝑎𝑝𝑝−𝑟𝑠
〉 

electrical signature) and c) (directional 〈δσ
𝑒𝑓𝑓−𝑟𝑠

〉 
average of effective root electrical signature) with the 
root geometrical properties such as radii, surface area, 
volume, age, and soil-root electrical contrast (C). The 
x-axis of these plots is arranged in increasing order of 
Pearson correlation coefficient (r2).  The root electrical 
signature terms depend strongly on electrical contrast 
(C) which is the mean ( ) – mean ( ) (last σ

𝑟𝑜𝑜𝑡
σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
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column in Fig. 3.13) as compared to other parameters. 
Root length, surface, and volume correlate to the same 
extent to root electrical signature terms (correlation 
coefficient ~ 0.5) while root radii and age correlate to 
the least extent comparatively. A positive correlation 
among different root variables with the root electrical 
signature suggests that it is a multivariate problem. It is 
interesting to see that the ranking of the correlation of 
electrical signature with different variables does not 
change when we have a point electrode signature, or 
quadrupole averaged signature or effective line 
electrode signature (different rows in Fig. 3.13). The 
magnitude of electrical signature is highest in the point 
electrode, intermediate in point quadrupole-averaged 
case, and lowest in line electrode effective case. By 
visual inspection of Figure 3.13, we find that age and 
length vary with root electrical signature terms 
correspondingly, while surface and volume form 
another group. The electrical contrast is an independent 
variable affecting the root electrical signature. 
Correlation analyses indicate that the root surface area 
and electrical contract are the two main drivers of the 
electrical signatures of root systems in the soils. 

We did a principal component analysis only on 
 which varies similarly as compared to 〈δσ

𝑒𝑓𝑓−𝑟𝑠
〉 
 and -S concerning other root 〈δσ

𝑎𝑝𝑝−𝑟𝑠
〉 δσ

𝑎𝑝𝑝−𝑟𝑠
variables (Fig. 3.13). The results of principal 
component analysis (Fig. 3.14) confirmed the 
multivariate dependency among different variables 
relating to root geometrical and electrical properties. 
The principal component analysis revealed that the first 
three principal components explained about 92% of the 
variability (Fig. 3.14). Principal Component 1, with 
58% of the total variance, captured the variability of 
root system size (volume, surface, radius, and age), 
which correlated with electrical contrast and the 
electrical signature. In other words, large root systems 
tend to increase their electrical signature. 
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Principal Component 2 separated the various drivers of 
variability into three groups. Age and length, which 
represent the extent of the root system, formed Group 1 
and were negatively correlated with . Radius 〈δσ

𝑒𝑓𝑓−𝑟𝑠
〉

made up Group 2 and was weakly correlated with 
. Volume and surface, which represent a 〈δσ

𝑒𝑓𝑓−𝑟𝑠
〉

combination of extension and thickness, formed Group 
3 and correlated with . Principal Component 〈δσ

𝑒𝑓𝑓−𝑟𝑠
〉

3 captures a small part of the variation, where contrast 
and are correlated and are independent of 〈δσ

𝑒𝑓𝑓−𝑟𝑠
〉 

the root system size. 
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Figure 3.13: Correlation plots of different root variables: age, volume, surface area, length, electrical conductivity 
contrast between root and soil denoted by C, which is mean ( ) – mean ( ) with the log10 of root σ

𝑟𝑜𝑜𝑡
σ

𝑏𝑢𝑙𝑘−𝑠𝑜𝑖𝑙
electrical signature. The top row represents root signature -S computed using surface electrodes 1, 4, 6, 9. δσ

𝑟𝑠−𝑎𝑝𝑝
The middle row represents the log  (quadrupole averaged ) vs root variables and the third row 〈δσ

𝑎𝑝𝑝−𝑟𝑠
〉 δσ

𝑟𝑠−𝑎𝑝𝑝
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represents the log of averaged effective root signature   vs root variables. The red dots represent the loam 〈δσ
𝑒𝑓𝑓−𝑟𝑠

〉
medium while blue dots are sand. Here, r represents the Pearson correlation coefficient.   
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Figure 3.14: Principal component (PC) analysis of different root variables: (a) PC1 vs. PC2 decomposition, (b) PC1 
vs. PC3 decomposition, and (c) PC2 vs. PC3 decomposition. The percentage values in the parentheses indicate the 
data variance explained by each PC. The circles have a unit radius going from –1 to 1 on both axes. 
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2.4 Model Limitations 
 

Here, we discuss the limitations of our modeling 
approach. First, we consider the limitations for the 
scenario where the process-based model described here 
is extended to model a real experiment. In agricultural 
fields as well as in the two-dimensional rhizotron, 
air-filled cracks can manifest in the soil, potentially 
influencing ERT measurements that our model does not 
account for; however, these could easily be integrated 
into the model. For future validation of the modeling 
results presented here in a real experiment, limitations 
in ERT such as bad electrode contact and other artifacts 
such as soil cracks can be combated through repeated 
measurements and adjustments during the experiment, 
which is simpler to implement in a rhizotron 
experiment than in the field (Huck and Taylor 1982). 

Our model did not consider specific rhizosphere 
processes such as root exudation, which could also 
affect the water content estimates. In the model, we 
assumed that salt did not accumulate near the roots but 
assumed passive solute uptake only with no active 
uptake, exclusion, or exudation. Though this has been 
observed experimentally in field conditions by Beff et 
al. (2013) and corresponds to a situation where the 
nutrient solution exactly fits the plants’ needs, the 
assumption is not necessarily always valid. Significant 
solute gradients may arise around roots through the 
processes mentioned above. If they were to occur, the 
forward conductivity map and hence the water content 
estimates could be impacted by such gradients.  

Also, roots can swell and shrink, causing air gaps that 
change spatially and temporally between soil and roots 
under field conditions (Carminati et al. 2009).  Studies 
have found that maize roots in sandy loam have a 
root-soil contact surface of 40 to 60% (Kooistra et al. 
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1992; Schmidt et al. 2012). These gaps could strongly 
influence the electrical signature by causing 
macroscopic anisotropy. Therefore, the inclusion of gap 
dynamics should be explored in future modeling 
studies.  Finally, we also ignored the anisotropy of σ 
inside the root structure (stele–cortex variations), 
which may have a considerable effect on ERT 
measurements. Such structural variations may induce 
an even higher degree of anisotropy in electrical 
measurements.  

2.5 Discussion 
 

The modeling work described here is one of the first 
attempts to understand the impact of roots on ERT data 
by including processes such as root water uptake. 
Because of the nature of ERT inversion, a deviation in 
the forward data, as quantified here, could be amplified 
in the final inversion results. Thus, it is important to be 
aware of errors in water content estimates that can be 
caused by root segments. Hence, this model can serve 
as a tool to quantify errors in ERT-obtained water 
content estimates arising from the presence of root 
segments. It can also be used to optimize ERT 
measurement schemes for maximizing or minimizing 
root sensitivity to different root architectures and to 
shed light on whether ERT data provide information on 
root phenotyping and, if so, what can be done to 
maximize this information. Also, this modeling work 
could benefit the development of bio-petrophysical 
relationships in rooted soil that take the morphological 
features of roots and their electrical properties into 
account. Such bio-petrophysical models would 
minimize the error in θ in the cropped field as 
estimated by the ERT method. 
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2.6 Conclusion 
 

We presented here a coupled model of water flow in 
the soil-plant-continuum and electrical conduction able 
to represent ERT experiments applied to the actual 
field/laboratory conditions. This modeling framework 
aims at evaluating the impact of roots on the effective 
electrical conductivity of the soil-continuum. We 
illustrated the model’s potential by simulating a 
growing and transpiring maize root system in a 
three-dimensional rhizotron and forward ERT 
measurements. The root system hydraulic architecture 
was derived from experimental data and root water 
uptake was simulated using a mechanistic water flow 
model in soil and roots. The impact of soil type and 
change of water content was evaluated using 
petrophysical relationships while the root electrical 
conductivity map was explicitly accounted for, based 
on measurements made on maize root segments.  

Analysis of the σ distributions generated by simulated 
root water uptake and root system architecture showed 
a scale- and soil-dependent impact on the apparent 
petrophysical relationships. Upscaling the σ data 
(through averaging) showed a deviation or spread 
around Archie’s curve with an uncertainty of 
approximately 0.01 S m–1 (at its peak) for given water 
content (Fig. 3.8-b). This deviation was caused by the 
presence of root segments. It is worth noting that 
uncertainty in the petrophysical relation of ~0.01 S m–1 
has been observed in some field ERT studies (Garré et 
al. 2011; Beff et al. 2013). In addition to measurement 
errors under field conditions, our model explains that 
the presence of root segments might also be an 
additional reason why ERT-obtained petrophysical data 
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sometimes have an uncertain spread around Archie’s 
curve.  

The difference between  and  in Figure  σ
𝑒𝑓𝑓𝑋

 σ
𝑒𝑓𝑓𝑍

3.8-a indicates macro-scale anisotropy in the soil-root 
system. Some studies show that electrical anisotropy 
could be used as a parameter to monitor soil–root 
systems (Furman et al. 2013; Rao et al. 2018, 2019). 
The feasibility of using electrical anisotropy at the field 
scale or pot scale for root phenotyping remains to be 
explored in a future study. Our model helps in 
predicting and quantifying the electrical anisotropy.  

The forward ERT modeling results showed that the 
evolution of apparent conductivity measurements 
depended on root growth. The root electrical signature 
term in the effective electrical conductivity , 〈δσ

𝑒𝑓𝑓−𝑟𝑠
〉

which is the relative change in effective conductivity 
caused by the presence of roots ranged from as low as 
0.1% to as high as 10% in the sand; in loam, it ranged 
from 0.02 to 0.6% (negligible). For every 1% increase 
in root to sand volume ratio, the uncertainty in   σ

𝑒𝑓𝑓

was 4.5% in sand and 0.2% in loam (negligible) (Figs. 
3.12-a, b). For surface electrode measurements, this 
uncertainty was even 18% in the sand and 1.5% in 
loam (Figs. 3.12-c, d).  

Correlation analysis between root electrical signature 
terms and roots’ geometrical properties and soil–root σ 
contrasts suggested that the impact of roots on 
electrical measurements has a multivariate dependency 
(Fig. 3.13). We cannot solely attribute the roots’ impact 
on bulk electrical properties to root mass density or 
root length density, but they somehow affect the results 
in combination. However, the most important factors 
influencing the electrical signature were the soil–root 
electrical contrast, which showed a very high 
correlation of 0.89, and root surface area (r ~ 0.6); the 
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root radius showed the lowest correlation. The 
principal component analysis biplots in Figure 3.14 
revealed that length and age were always correlated, as 
well as surface and volume, demonstrating similar 
information content.  

Hence, the coupled model described in this chapter can 
serve as a tool to optimize the ERT measurement 
scheme for maximizing/minimizing root sensitivity for 
different root architectures or to shed light on whether 
ERT data has information on root phenotyping and if 
so, what can be done to maximize the information. 
Also, this modeling work could benefit the 
development of the bio-petrophysical relationship in 
the rooted soil that takes root morphological features 
and its electrical properties into account. Such 
bio-petrophysical models will minimize the error in 
SWC estimates in the cropped field from the ERT 
method. 
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4 SIMULATION-BASED 
INVESTIGATION OF 
THE GEOMETRICAL 
INFORMATION 
CONTENT OF THE 
SOIL-ROOT 
CONTINUUM IN 
GEO-ELECTRIC 
MEASUREMENTS 

 

ABSTRACT 
Non-invasive characterization of root systems and their 
functioning is a challenging but important task in the 
pursuit of ideal root systems. We hypothesize that 
geo-electrical measurements (ERT/EIT) contain 
information on the geometrical features of root 
architecture and could, therefore, be used for root 
phenotyping. To test our hypothesis, we used the 
process-based model described in Chapter 3 to generate 
virtual electrical data of 75 root systems comprising of 
3 species. Crootbox software was used to generate 
synthetic root architecture of different species. Our 
modeling results demonstrate a high correlation 
between geometrical parameters of root networks and 
simulated electrical anisotropy of effective conductivity 
of the soil-root continuum. Thus, electrical anisotropy 
is a very promising proxy for monitoring root topology.  
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3.1 Introduction 
 

Root architecture plays a key role in acquiring water 
and nutrients efficiently (Mi et al. 2010). For example, 
rice breeds that have deeper roots can access deeper 
water table, demonstrating thereby higher resistance 
against drought (Uga et al. 2013). However, a large 
root system also means higher metabolic costs for root 
growth (Lynch 2015) which can sometimes reduce 
above-ground yield as observed in Maize under 
drought (Bruce et al. 2002). Hence there is a trade-off 
between root system size and metabolic cost for 
developing the root system for an optimal yield. 
Shallow root growth is efficient in acquiring nutrients 
like phosphorous where water scarcity is not a problem 
while deep vertical growth is an important underwater 
deficit (Lynch and Brown 2008). In addition, models 
have been used to show how a combination of root 
architectural and hydraulic traits (or phenes) could 
yield optimal uptake strategies as a function of the 
environmental conditions (Leitner et al. 2014; Meunier 
et al. 2020). Hence, root architecture is an important 
property of a root system that can be tailored for soil 
and weather conditions for maximizing yield. 
Quantifying root architecture in situ to assess root 
system performances is therefore the key to select 
optimal plant roots and increase drought resistance and 
crop yields. 

Usually measuring root architecture involves either 
expensive non-invasive techniques such as Magnetic 
resonance imaging (MRI) or X-ray tomography or 
labor-intensive manual extraction of the root system 
which is difficult in-situ on the fields. Yet, none of 
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these techniques is perfect. X-ray is limited to a small 
column, MRI has a low spatial resolution (Metzner et 
al. 2015) and field coring or trenches only provide a 
limited amount of information on the root system itself 
(Morandage et al. 2019). Therefore, different global 
indices have been proposed to characterize root system 
topology and architecture. For example, Popova et al. 
(2016) used the root tortuosity index on MRI-derived 
maize root architectures to investigate root elongation 
and root path formation processes in a pot experiment. 
They also used simpler indices such as depth vs root 
total length and horizontal vs vertical growth ratio to 
study gravitropism of root structures.  

Grift et al. (2011) developed an imaging system to 
phenotype Maize root in a high throughput sense. First, 
they had to uproot the plants and place them on an 
imaging device, which then captured high-resolution 
digital images of the root architecture. They then 
computed parameters, assumed to be proxies for root 
complexity, such as fractal dimension (FD) and root 
top angle from these digital images taken. These 
parameters could differentiate different genomes in 
maize. They also proved that roots are fractal-like 
structures by demonstrating a high correlation between 
FD evaluated from digital images taken laterally and 
from the top.  

Numerous other studies have also used FD for studying 
root system complexity (Yamauchi et al. 1989; Eghball 
et al. 1993; Nielsen et al. 1997; Masi and Maranville 
1998; Wang et al. 2009; Bouda et al. 2016). Walk et al. 
(2004) related FD to nutrient acquisition and soil 
exploration efficiency of a root system. Wang et al. 
(2009) observed that root traits such as total root length 
related to FD with a correlation coefficient as high as 
0.9. Using FD, they could also differentiate and 
quantify drought responses in different rice genotypes.  
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In addition, other indices have been used in the 
literature to characterize network topology. To study 
fracture networks in rocks, Zhang and Sanderson 
(1995) used the ratio of the sine of the angle between 
the fracture network and scan lines in the vertical and 
horizontal direction. The scan lines were vertical or 
horizontal lines and this ratio of sine intersection angle 
or the geometrical anisotropic factor ( ) captured 𝐺𝐴𝐹
permeability of rocks (Figure 7 in (Zhang and 
Sanderson 1995)). Vertical and horizontal root extents 
have been used to study gravitropism in roots (Popova 
et al. 2016). Recently, Meunier et al. (2020) used a 
convex hull of root system architectures for sensitivity 
analysis of synthetic root architectures for crop 
breeding applications.  

Non-invasive techniques such as the electrical 
resistivity tomography (ERT) (Rao et al. 2020) and 
electrical impedance tomography (EIT) (Weigand 
2016) method might offer promising features for the 
root system phenotyping. However, it is not clear 
whether the electrical properties of the soil-root domain 
derived from ERT/EIT contain relevant information on 
root architectural features for phenotyping.  

In this chapter, we hypothesize that anisotropy in the 
frequency-dependent electrical signature of a vegetated 
soil pot is a function of the root system architecture. 
Anisotropy could arise due to root processes such as 
root water uptake, root architectural evolution 
(growth), exudation, soil gaps generated by swelling 
and shrinking of roots, and solute uptake. In this study 
though, we only take root architecture and root water 
uptake as the possible factors leading to electrical 
anisotropy. We also expect that this electrical 
anisotropy of soil-root medium could contain 
information on root geometrical features such as root 
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architecture and water uptake patterns. Therefore, the 
objectives are three fold: 

1. To investigate whether frequency-dependent 
electrical properties of the soil-root continuum 
contain information on root system architecture? 

2. To assess which electrical properties of the soil-root 
continuum can be related to root parameters such as 
root length, root fractal dimension, root extent or 
root volume, etc.? 

3. To define optimal experimental conditions for root 
phenotyping (in terms of root radius, EC contrast, 
etc.). 

Here in this chapter, we use process-based numerical 
experiments of Chapter 3 in a cuboid pot geometry for 
a series of simulated root systems to achieve our 
objectives.   

 

3.2 Materials and Methods 
 

The methodology of the current chapter is presented as 
a flowchart in Figure 4.1. First, the complex electrical 
signatures of soil and roots were characterized. The 
second step consisted of generating 25 different 
replicates of root system architectures of three different 
species grown in pots using the root architectural 
software CRootbox (Schnepf et al. 2018). The three 
species were chosen to represent contrasted root system 
topology. In the third step, root water uptake for these 
seventy-five root systems in pots was simulated using 
R-SWMS (Javaux et al. 2008). The water content 
distribution of soil was transformed into soil complex 
electrical conductivity distribution using the measured 
petrophysical relation. Electrical anisotropy in 
electrical conductivity in the horizontal and vertical 
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direction was computed on the generated electrical 
conductivity map with explicit root representation 
using EIDORS (Adler and Lionheart 2006) as 
described in Chapter 3. In the next subsections, each 
step is described briefly. 

 

Figure 4.1: Methodology for comparing soil-root electrical 
properties with the geometrical indices of root architecture. 

3.2.1 Silty Soil Petrophysical Relation 
 

The frequency-dependent impedance response of silty 
soil was determined using soil column experiments at 
different moisture levels (van Treeck 2019). The 
following empirical equation was used to fit the 
measurement data: 
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                                                                        σ = exp 𝑒𝑥𝑝 𝑎ϕ𝑐 + 𝑏( ) 
(4.1) 

where,  is the electrical conductivity (inverse σ 𝑆 𝑚−1[ ]
of resistivity) decomposed into real and imaginary part 
(  and ),  are the soil water content σ

𝑟𝑒𝑎𝑙
σ

𝑖𝑚𝑎𝑔
ϕ −[ ]

saturation and , and c are the fitting parameters. The 𝑎 𝑏 
empirical fitting parameters along with the data are 
shown in Figure 4.2. 

 

 

Figure 4.2: Measured and empirical fits to silt electrical 
conductivity at different moisture levels. a) real part of σ, 
and b) imaginary part of σ. The fitting parameters are shown 
as a table. 

3.2.2 Root Electrical properties 
 

The objective of this experiment was to obtain a range 
of electrical properties for different types of roots. Root 
electrical properties were measured for Maize (Zea 
Mays), Ryegrass (Lolium perenne), Rapeseed (Brassica 
napus), and Stiff brome (Brachypodium distachyon L.). 
The impedance of root segments belonging to these 
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species was measured at different frequencies ranging 
from 1 to 10 kHz as described in section 2.8.3. These 
measurements were part of the Ph.D. thesis of Solomon 
Ehosioke (under publication 2020). The measurement 
was repeated on four replicates on the collar segment 
of primary roots. The distance between the four-point 
electrode was 1.5 cm. At the time of measurements, 
roots were 4 weeks old from the date of germination. 
The results along with mean and standard deviation are 
shown in Figure 4.3. The real part of conductivity 
increases approximately three times between 10 and 
10KHz while the imaginary part increases by a factor 
six showing a very strong polarization signature. We 
chose the lower limit of Brachypodium and upper limit 
of Brassica (black dashed lines in Fig. 4.3) denoted by 

 and at 10 Hz and 10 KHz (black circles and σ
𝑙

σ
𝑢
 

squares in Fig. 4.3) for parameterizing our different 
species. The parameters  and σ

𝑟𝑜𝑜𝑡
= σ

𝑙
σ

𝑟𝑜𝑜𝑡
= σ

𝑢
 

envelops realistic ranges of electrical properties for 
roots. These will be used in the rest of this study to 
represent the electrical signal for other plant species. 

 

Figure 4.3: Measured electrical conductivity of different 
root segments as a function of frequency. The vertical lines 
represent the standard deviation of four plants. Black circles 
and squares indicate the upper and lower limit of root 
electrical conductivity range at 10 Hz and 10 KHz.  

3.2.3 Root Architecture Simulation 
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We generated synthetic three-dimensional root system 
architectures constrained to grow in cuboid pots of size 
20 cm x 20 cm x 30 cm. We chose three different plant 
species with very contrasted root system architectural 
features:  Anagallis Foemina, which produces nearly 
horizontal secondary roots, Brassica napus, which 
produce tilted secondary roots and Zea mays having 
nearly vertical roots as shown in Figure 4.4. C-Rootbox 
software (Schnepf et al. 2018) was used for the 
generation of these root architectures. Each plant 
species is characterized C-Rootbox by a set of 
parameters that describe the root geometrical and 
growth properties, whose values are picked up from a 
distribution defined by the parameter mean and 
standard deviation. The root architectural parameters 
for each category of root architecture were referred 
from (Schnepf et al. 2017). Further, we generated 25 
replicates or realizations for each plant species 
comprising a total of 75 root systems for our study. 
Replicates of a given species share the same mean and 
standard deviation values for their parameterization. 
The first three replicates are shown in Figure 4.4.  

We modified the original values of the species’ 
parameters in C-Rootbox such that it produced root 
systems with only two root orders: primary and 
secondary roots. We do not simulate higher-order roots 
due to computational constraints in finite element mesh 
generation. In addition, the number of secondary roots 
was randomly reduced by 25% to have a manageable 
computational load while meshing. This simplification, 
though not perfectly representative of a real plant 
(higher-order removed), still preserves the main 
topological features of the different species. 
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Figure 4.4: The First three realization (rows) of different 
root architectures (columns) generated using C-Rootbox. 
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The cube represents the top, front, and side view of the root 
architectures.  Colors indicate plant species: blue = 
Anagallis, green = Brassica, and red = Zea mays. 

 

 

 

 

3.2.4 Geometrical Indices for Soil-Root System 
 

In order to quantify the geometrical and topological 
differences species, we reviewed a series of indices 
found in the literature.  

Root extent and slope ratio 

We define the following indices based on the root 
system architecture (see Fig. 4.5): 

● Anisotropy based on root system extent: 

 𝐴𝐹
𝑒

=
𝑍

𝑒𝑥𝑡𝑒𝑛𝑡

𝑋
𝑒𝑥𝑡𝑒𝑛𝑡

2+𝑌
𝑒𝑥𝑡𝑒𝑛𝑡

2

where  is the vertical distance between the 𝑍
𝑒𝑥𝑡𝑒𝑛𝑡

soil surface and the deepest root segment,  𝑋
𝑒𝑥𝑡𝑒𝑛𝑡

and  are horizontal distances between the 𝑌
𝑒𝑥𝑡𝑒𝑛𝑡

most distant root segments along X and Y, 
respectively as shown in Figure 4.5 (Popova et al. 
2016).  
 

● Average slope ratio ( ) of root segments (see Fig. 𝑆𝑅
4.5): 
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 𝑆𝑅 =   𝑖=1

𝑛

∑ 𝑑𝑧

𝑖=1

𝑛

∑ 𝑑𝑥2+𝑑𝑦2
                 

where ,  and  are incremental distance 𝑑𝑥 𝑑𝑦 𝑑𝑧
within a root segment in x, y, and z directions as 
shown in Figure 4.6. The summation is over all the 
root segments. 
 

● Root architecture convex hull volume (yellow box 
in Fig. 4.5) to the total pot volume ratio (Leitner et 
al. 2014): 
 

                       𝑉𝑅 =   𝑣𝑜𝑙. 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 𝑜𝑓 𝑟𝑜𝑜𝑡 𝑠𝑦𝑠𝑡𝑒𝑚
𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑜𝑡                  

 
 

● The total length of the root system denoted by L 
(Schnepf et al. 2018).  
 

 𝐿 =
𝑖=1

𝑛

∑ 𝑑𝑙

where dl is the length of a particular root segment 
and summation is over all the root segment.  

Fractal Dimension ( ) 𝐹𝐷

We first convert a given root architecture generated 
from Crootbox into a 2-D binary image in front view 
(XZ plane) and then apply the traditional box-counting 
method to compute the underlying Fractal dimension as 
described for Maize roots by Grift et al. (2011). In the 
box-counting method (Landis 2005; Grift et al. 2011), 
we discretize the 2-D binary image of the root 
projection in XZ plane with a square grid or boxes of 
different sizes as shown in Figure 4.5 (a-d) and count 
the no. of boxes (N) that completely cover the 2-D root 
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architecture for a given box or grid size (s) (grey boxes 
in Fig. 4.5-a). Then we may vary the box size (s) and 
recompute N as a function of s.  The slope of the plot 
of the logarithm of N vs logarithm of the inverse of s is 
the fractal dimension (Landis 2005).  Mathematically, 

 can be written as (Bouda et al. 2016): 𝐹𝐷

 = . 𝐹𝐷 −𝑙𝑜𝑔 (𝑁 𝑠( ))
𝑙𝑜𝑔 (𝑠)  

The procedure of converting root architecture into a 
2-D binary image and then computing its  is 𝐹𝐷
achieved using custom made MATLAB functions. 
Fractal dimension is computed for three possibilities 
each for the front, lateral, and top view of the root 
architecture denoted by ,  and .  𝐹𝐷

𝑥
𝐹𝐷

𝑦
𝐹𝐷

𝑧

Geometrical Anisotropic Factor ( ) 𝐺𝐴𝐹

We modified the 2-D  indices used in their study to 𝐺𝐴𝐹
capture the 3-D geometry of the root system 
architecture.   

We compute  index for our synthetic root systems 𝐺𝐴𝐹
only in two coordinates (XZ) ignoring the Y-variations. 
First, we have parallel scanlines with a spacing of 2 cm 
in the horizontal or vertical direction. Two such scan 
lines (red dashed lines) along with the point of 
intersection between scanline and root segments (black 
dots) are shown in Figure 4.5-e. The  is the ratio of 𝐺𝐴𝐹
the sine of intersection angle between root segments 
and scan lines in the vertical and horizontal direction:  

                                                𝐺𝐴𝐹 =
1

𝐿𝑧 ∑sin𝑠𝑖𝑛 γ
𝑍( ) 

0.5* 1
𝐿𝑥 ∑sin𝑠𝑖𝑛 γ

𝑋( )+ 1
𝐿𝑦 ∑sin𝑠𝑖𝑛 γ

𝑌( )  ( )
where, , and  are the angles between a scan line γ

𝑋
γ

𝑌
 γ

𝑍

and root segments in different directions, the 
summation is on the number of intersections between 
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scan lines and root segments, ,  and  are the  𝐿𝑥 𝐿𝑦, 𝐿𝑧
length of scan lines in X, Y and Z directions (Zhang 
and Sanderson 1995). Because of the ratio,  is 𝐺𝐴𝐹
independent of total root length but only depends on 
root architecture.  

 

 

Figure 4.5: Geometrical indices on root system architecture. 
The shaded grey boxes are traversed by root segments used 
for the box-counting method while white and yellow boxes 
are untouched by roots. The yellow region represents the 
convex hull of the root system architecture. Scanlines for 
computing geometrical anisotropic factor ( ) are shown 𝐺𝐴𝐹
(dashed lines) along with the point of intersection (dots). 

3.2.5 Root water uptake simulation 
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We used the soil-plant water flow model R-SWMS 
(Javaux et al. 2008) to simulate the evolution of soil 
water content distributions affected by root water 
uptake.  The soil domain had the following dimension: 
20 [cm] x 20 [cm] x 30[cm] (the corresponding 
reference axis are -10 < x < 10 [cm], -10 < y < 10 [cm], 
-30 [cm] < z < 0) corresponding to a cuboid pot. The 
initial time (or root age) was 25 days and the initial soil 
condition was a homogeneous water content 
corresponding to a pressure head of -50 [cm]. We 
simulated water uptake for 6 days, with an imposed 
transpiration flow of 20 cm3/d, which allowed the root 
system to generate soil water depletion patterns as 
shown in Figure 4.6. The other boundary conditions for 
the soil domain were no flow (no drainage and no 
evaporation).  
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Figure 4.6: Root water uptake simulation at Y = 0 plane for 
one of the 25 realizations of each different species in 
R-SWMS: a) day 25, b) day 26, c) day 27 and d) day 31. 

For soil hydraulic parameters, we chose the 
van-Genuchten model of a Silty loam. For root radial 
and axial hydraulic conductivity values, we chose 
parameters from the study of (Koch et al. 2019). 

 

 

 

Table 4.1: 

 

3.2.6 Finite element mesh generation and the finite 
element model 

 

In order to solve the Poisson equation, a detailed finite 
element meshing representing explicitly the root 
system had to be produced.   The 3-D root structures 
were meshed using Gmsh (Geuzaine and Remacle 
2009) to create a finite element electrical simulation 
model in a cuboid pot geometry. The tetrahedrons 
generated were of good quality (mesh quality factor > 
0.7 for 90% of elements while none had quality factor 
less than 0.2) with zero ill-shaped elements in the 
mesh. The finite element model for one of the 
realizations of Anagallis in a pot geometry for different 
root radii is shown in Figure 4.7. Due to the small root 
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Residual 
water content 

 [cm3/cm-3] θ
𝑟

Saturation 
water content 

 [cm3/cm-3] θ
𝑠

Shape parameters 
of VGM model 

Hydraulic 
conductivity of 
soil  [cm/day] 𝐾

𝑠
 𝑎

[1/cm]  𝑛

 𝑚
[

1 −  
] 

 λ

0.06 0.41 0.03 2.5 0.6 0.5 10.24 



radius (r ~ 1 mm), mesh refinement near root segments 
was achieved using distance and attractor features in 
Gmsh. The root radius in the final finite element mesh 
is back computed using a known volume of root 
tetrahedrons and total root length in C-Rootbox 
generated root systems.  Similar to chapter 3, we 
created finite element models with three cases of root 
segment radii (r1 ~ 1 mm, r2~1.5 mm, r3~ 2.5 mm as 
shown in Fig. 4.7-d) in the finite element mesh to 
understand the scaling of electrical properties with the 
increasing root volume/radii. The number of 
tetrahedrons in the finite element mesh ranged from 
2e5 to 6e5.  The simulated root systems are less than 
1% in volume for all the scenarios considered as shown 
in Figure 4.7-d.  
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Figure 4.7: Finite element model in a pot geometry for a 
root architecture for a) radius = r1, b) r2 and c) r3. The green 
rectangles at the boundary represent the six-plate electrode 
on each face of the cuboid and d) root to soil volume ratio in 
percentage for r1 (square), r2 (circle), and r3 (triangle) 
scenarios for 75 different root systems in the finite element 
mesh. Colors indicate plant species: blue = Anagallis, green 
= Brassica, and red = Zea mays. 

3.2.7 Electrical anisotropic factor 
 

After the mesh generation, we assigned each finite 
element with appropriate electrical property similar to 
the procedure explained in Chapter 3. Furthermore, we 
generate additional simulation data by assuming the 
electrical properties of 4 different species as shown in 
Figure 4.3.  

First, we computed effective electrical conductivity (
) in the two perpendicular directions (X) and (Z) σ

𝑒𝑓𝑓

using four plate electrodes located on four faces of the 
cuboid (Figs. 4.7-a, b, and c). For example, effective 
electrical conductivity between the plate electrode 
located in the top and the bottom face (XZ-plane) in 
Figure 4.8 gives the effective property in Z-direction 
denoted by . Similarly, we get effective electrical σ

𝑒𝑓𝑓𝑍

conductivity  using the left and right plate σ
𝑒𝑓𝑓𝑋

electrodes. Due to the rotational symmetry of root 
systems and for simplicity, we do not consider the 
effective properties in the Y direction. For computing 
effective properties between plate electrodes, we solve 
Poisson’s equation using EIDORS software in 
MATLAB (Adler and Lionheart 2006) as described in 
Chapter 3.  

The computed quantities,  and  are complex σ
𝑒𝑓𝑓𝑋

σ
𝑒𝑓𝑓𝑍

quantities having magnitude and phase ( ). We define φ
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the effective percentage anisotropic factor in magnitude 
as: 

 ξ = 100 *
σ

𝑒𝑓𝑓𝑋| |
σ

𝑒𝑓𝑓𝑍| | − 1( )
Similarly, in phase, we define it as  = - . These  δφ φ

𝑋
φ

𝑍

quantities quantify heterogeneity in electrical 
conductivity in two principal directions. The magnitude 
part quantifies the DC properties while the phase part 
represents the polarizing property as described in 
Chapter 2.  

 

 

3.2.8 The testing discriminatory power of Indices 
 

To test if a root index sufficiently discriminates a 
particular species from others, we do the following 
tests: 

1. Check for the statistical significance of particular 
indices between three different species using 
ANOVA. 

2. Compare means of particular indices between three 
different species pairwise and perform Tukey mean 
honestly significant difference test for statistical 
significance (Tukey 1949). 

3. Perform the K-nearest neighbor classification 
algorithm to check If the algorithm correctly 
classifies a particular species based on a particular 
index (Peterson 2009).  

 

3.3 Results and Discussions 
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3.3.1 Characterization of geometrical and 
topological differences between root systems 

 

The various geometrical and topological indices 
described in section 4.2.4 were applied to each 
replicate of each species to characterize the variation of 
geometry within and between species.  We performed 
linear correlation analysis pairwise and the results are 
shown in Figure 4.8. 

From the probability density functions (pdf) (diagonal 
of Fig. 4.8), we see that ,  and  𝐺𝐴𝐹 𝑆𝑅, 𝐴𝐹

𝑒
discriminates different root architectures (fewer 
overlaps between red, green and blue curves) better 
than the , , ,  and  indices. In addition, 𝑉𝑅 𝐿 𝐹𝐷

𝑥
𝐹𝐷

𝑦
𝐹𝐷

𝑧
we observe an overlap between blue and green pdf for 
indices , , , ,  and , which 𝐴𝐹

𝑒
𝑉𝑅 𝐿  𝐹𝐷

𝑥
𝐹𝐷

𝑦
𝐹𝐷

𝑧
demonstrates that these are not suitable for 
discriminating root system architectures of Zea mays 
and Brassica. On the other hand, well-separated pdf can 
be seen in  and  showing their superiority in 𝐺𝐴𝐹 𝑆𝑅
discriminating against the three species root system 
architectures. The anisotropy in root extent ( ) also 𝐴𝐹

𝑒
nicely differentiates different species but in an opposite 
trend (red dots below the blue dots) as compared to 

, , ,  and  and is also well correlated 𝐺𝐴𝐹 𝑆𝑅 𝐹𝐷
𝑥

𝐹𝐷
𝑦

𝐹𝐷
𝑧

to other variables including the length with Pearson 
coefficient ranging from 0.72 to 0.91 (p < 0.0001).  

We observe a strong correlation (r ~ 0.9) that are highly 
significant (P < 0.0001) between fractal dimensions 
obtained from a different cross-sectional view of the 
synthetic root architectures ( ,  and ) This is 𝐹𝐷

𝑥
 𝐹𝐷

𝑦
𝐹𝐷

𝑧
consistent with the experimental observations made by 
Grift et al. (2010) who observed correlation ranging 
from 0.77 to 0.88 (P < 0.001) between fractal 
dimensions of lateral and top root images. We also 
observe that  is nicely correlated with all other 𝐺𝐴𝐹
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indices except total root length (L) and structurally 
appears similar to the slope ratio (SR) and fractal 
dimension ( ,  and ). Hence these indices 𝐹𝐷

𝑥
𝐹𝐷

𝑦
𝐹𝐷

𝑧
essentially capture the same information of the root 
topology.  

Our next step is to relate each of these geometrical 
indices to the electrical anisotropy index (  and ) ξ  δφ
defined in section 4.2.7 and assess which of the 
geometrical features can be retrieved from electrical 
anisotropy.  
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Figure 4.8: Correlation analysis and scatter plot of root 
geometrical indices. Colors indicate plant species: blue = 
Anagallis, green = Brassica, and red = Zea mays. The 
distributions on the diagonal represent the probability 
density functions of each index. 

3.3.2 Electrical anisotropy signatures of roots  
 

Figure 4.9 shows simulated  vs  for the different ξ δφ
radius (r1, r2, r3), frequency (10 Hz and 10 kHz), root 
electrical conductivity (  and ) and σ

𝑟𝑜𝑜𝑡
= σ

𝑙
σ

𝑟𝑜𝑜𝑡
= σ

𝑢
time (day 25.2 and 31).  

At low frequency or DC and at initial time 25.2, we do 
not see any anisotropy both in magnitude and phase 
due to the absence of root polarization as well as soil 
water uptake pattern (first row of Fig. 4.9-a). On day 
31, as root takes up water, we see some anisotropy in 
magnitude (second row of Fig. 4.9-b) which is mainly 
the response of the soil. The phase anisotropy remains 
negligible for frequency = 10 Hz and  . σ

𝑟𝑜𝑜𝑡
= σ

𝑙
Interestingly, the impact of the radius is also negligible. 
Hence, under these circumstances, anisotropy cannot 
be used for phenotyping root systems. 

In Figure 4.9b, we kept the frequency same (10 Hz) but 
changed root electrical properties to the upper limit (

). We not only observe the impact of radius σ
𝑟𝑜𝑜𝑡

= σ
𝑢

as opposed to Figure 4.10-a but also observe the phase 
anisotropy ( ). Larger the root radius, higher the  δφ ξ
and . Interestingly, we do not observe the impact of δφ
time or the soil water uptake so much. Hence, for a 
high contrast roots ( ), anisotropy is driven by σ

𝑟𝑜𝑜𝑡
= σ

𝑢
root presence, at least for the assumed parameters.   

At high frequency (10 kHz), when roots have low 
contrast with soil ( ), the radius has an impact σ

𝑟𝑜𝑜𝑡
= σ

𝑙

on  but not on  both when soil is homogeneous (day δφ ξ
25.2 in Fig. 4.9-c) and when the soil has uptake 
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patterns (day 31 in Fig. 4.9-c). We see a linear increase 
of magnitude in  with an increasing radius. When δφ
roots have higher contrast than soil ( ), we σ

𝑟𝑜𝑜𝑡
= σ

𝑢

see an increase in both  and  in a linear fashion ξ δφ
with increasing radii.  

From Figure 4.9, we learn that discrimination between 
species in terms of electrical anisotropy is poorer for 
thinner roots (r = r1) than for thicker roots (r = r3). For 
low frequency or DC measurements, only for radius = 
r3 and , we see nice discrimination of σ

𝑟𝑜𝑜𝑡
= σ

𝑢

different species (Fig. 4.9-b). Hence for low-frequency 
measurements, the ideal situation for electrical imaging 
of root is when roots are thicker, have good electrical 
contrast with soil, and contains soil water uptake 
patterns. At high frequency, we see a nice separation 
among species both in magnitude and phase for both 

 and  due to polarizability of roots σ
𝑟𝑜𝑜𝑡

= σ
𝑙

σ
𝑟𝑜𝑜𝑡

= σ
𝑢

(Figs. 4.9-c and d). Hence, high frequency should be 
favorable for imaging root systems, at least for the 
assumed parameters.  

Another interesting feature to be observed in Figure 4.9 
is the slope (m) between  and  which varies as a ξ δφ
function of time, frequency, radius, and root electrical 
properties. The slope signifies the dominance of the 
phase part of anisotropy ( ) over magnitude ( ). A δφ ξ
large slope implies high polarizability (Fig. 4.9-c) 
while zero slopes (Fig. 4.9-a) implies no polarization. 
The slope is quite horizontal when soil is 
homogeneous, freq=10 Hz and  (Fig. 4.9-a) σ

𝑟𝑜𝑜𝑡
= σ

𝑙

and becomes positive for or freq=10 kHz as σ
𝑟𝑜𝑜𝑡

= σ
𝑢

a function of radius, time, and frequency (Figs. 4.9-b, 
c, and d).  
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Figure 4.9:   versus  for different root radii (columns) ξ δφ
and time (rows) for a)  and frequency = 10 Hz, b) σ

𝑟𝑜𝑜𝑡
= σ

𝑙
 and frequency = 10 Hz, c)  and σ

𝑟𝑜𝑜𝑡
= σ

𝑢
σ

𝑟𝑜𝑜𝑡
= σ

𝑙
frequency = 10 kHz, and d)  and frequency = 10 σ

𝑟𝑜𝑜𝑡
= σ

𝑢
kHz. Colors indicate plant species: blue = Anagallis, green = 
Brassica, and red = Zea mays. m is the slope of the 
correlation line. 

 

3.3.3 The relation between electrical anisotropy and 
geometrical indices at low frequency 

 

Figure 4.10 relates  for different root electrical ξ
properties (  and ), radii (r1, r2, and r3) and water σ

𝑙
σ

𝑢

uptake patterns (at day 25.2 and 31) with different 
geometrical indices. We do not relate  to δφ
geometrical indices at low frequency due to low 
polarization of roots as observed in Figure 4.10.  

First, we observe that the correlation between  and ξ
other geometrical indices is always higher than 0.6 in 
absolute value when the soil water content is 
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homogeneous (day 25.2) as seen in Figure 4.10-a and c. 
This demonstrates that information on root geometrical 
information is present in electrical anisotropy. 
However, the magnitude of anisotropy is very small at 
day 25.2 (in Fig. 4.10-a) as the soil is homogeneous 
with little uptake near the collar and low contrast 
between soil and roots. On the opposite, on day 31 
(Fig.  4.10-b), soil water content is more heterogeneous 
due to water uptake, and it translates into a broader 
range of . This means that, for less contrasted soil-root ξ
properties, the electrical anisotropy is enhanced by 
uptake patterns induced by roots rather than by the 
presence of roots only. 

It is also interesting to note that the slope reverses 
direction in Figure 4.10-c as compared to Figure 
4.10-a. This might be due to the preferential flow of 
electric current in Figure 4.10-c due to the higher 
conductivity of roots ( ) as compared to σ

𝑟𝑜𝑜𝑡
= σ

𝑢

Figure 4.10-a where roots had lower conductivity (
).  Figure 4.10-c further shows that  can be σ

𝑟𝑜𝑜𝑡
= σ

𝑙
ξ

related to , , , and  with a correlation as 𝐿 𝐹𝐷
𝑥

𝐺𝐴𝐹 𝑆𝑅

high as 0.9 when soil is homogeneous and root 
electrical conductivity (  has sufficient contrast as σ

𝑢
)

compared to soil electrical conductivity.  

We also observed that increasing radius had no impact 
in  (results not shown) and hence the variations we ξ
observe in Figure 4.10-a are predominantly due to root 
architecture and root electrical properties at day 25.2. 
At a later time, the root water uptake pattern distorts 
the linear relation of anisotropy with geometrical 
indices as evident from the lower correlation on day 31. 

143 
 



 

Figure 4.10:   as a function of various geometrical indices ξ
for a) electrical conductivity of root =  and at day 25.2, a) σ

𝑙
electrical conductivity of root =  and at day 25.2, b) σ

𝑙
electrical conductivity of root =  and at day 31, c) σ

𝑙
electrical conductivity of root =  and at day 25.2 and d) σ

𝑢
electrical conductivity of root =  and on day 31. Colors σ

𝑢
indicate plant species: blue = Anagallis, green = Brassica, 
and red = Zea mays. m is the slope of the correlation line. 

 

3.3.4 Electrical anisotropy phase at high frequency 
 

Simulations at 10 KHz and day 25.2 (homogeneous 
soil) show that for ,  has a good σ

𝑟𝑜𝑜𝑡
= σ

𝑙
δφ

correlation with , ,  and  while the 𝐿 𝑆𝑅 𝐺𝐴𝐹, 𝐹𝐷𝑥
correlation is weaker in  (Fig. 4.11-a). With the onset ξ
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of water depletion pattern at day 31 in Figure 4.11-b, 
improvement of the correlation coefficient between  ξ
and some geometrical indices can be observed while 
the general trend of  remains the same. Thus, we can δφ
conclude that  mainly depends on soil water uptake ξ
patterns when roots are less conductive ( ) σ

𝑟𝑜𝑜𝑡
= σ

𝑙

while  is essentially due to root presence.  δφ

For , we see that both  and  show good σ
𝑟𝑜𝑜𝑡

= σ
𝑢

ξ δφ

correlation with geometrical indices irrespective of the 
water uptake patterns (Figs. 4.11-c and d). Thus, when 
soil-root electrical contrast is high enough, electrical 
anisotropy in both magnitude and phase can be related 
to root geometrical features such as , ,  and 𝐿 𝑆𝑅 𝐺𝐴𝐹,

. 𝐹𝐷𝑥

We also observe in Figure 4.11 that the slope between 
electrical anisotropy and geometrical indices (black 
dashed line) varies as a function of root electrical 
contrast and uptake. The slope (m) increases from 
Figure 4.11-a to Figure 4.11-d eight times in  and forty ξ
times in . This might open the possibility of using δφ
these correlations to have a quantitative index for root 
activity and properties.  
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Figure 4.11:   and  as a function of various geometrical ξ δφ
indices for a) electrical conductivity of root =  and at day σ

𝑙
25.2,  b) electrical conductivity of root =  and at day 31, c) σ

𝑙
electrical conductivity of root =  and at day 25.2 and d) σ

𝑢
electrical conductivity of root =  and on day 31. Different σ

𝑢
colors indicate plant species: blue = Anagallis, green = 
Brassica, and red = Zea mays. m is the slope of the 
correlation line. 
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3.3.5 The discriminatory power of electrical 
anisotropy  

 

Figure 4.12 shows the probability density functions of 
, , , , , ,  and . We can observe 𝐺𝐴𝐹  𝑆𝑅 ξ δφ 𝐹𝐷𝑥  𝐿 𝐴𝐹𝑒, 𝑉𝑅

that electrical quantities  and  (shown for frequency ξ δφ
= 10 kHz, radius = r1, and day 25.2) discriminates (less 
overlap between different colors) the different root 
architectures as good as  or  and better than 𝐺𝐴𝐹 𝑆𝑅
most other variables considered. Both one-way 
ANOVA and pairwise Tukey mean HSD statistics show 
differences between different species (red, blue, and 
green in Fig. 4.12) of both geometrical indices and 
electrical anisotropy are statistically significant (p = 
0.001). This shows that  and  can be used for root ξ δφ
phenotyping purposes at higher frequency (10 kHz).  

 

Figure 4.12: Probability density function of different 
variables (xlabels). Different colors indicate blue = 
Anagallis, green = Brassica, and red = Zea mays. 

To further highlight the discriminatory power of each 
index, we did a K-nearest neighbor classification (k = 
3) and the resulting classification accuracy scores are 
shown in Figure 4.13. In this machine-learning 
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approach, we observe that both magnitude (Fig. 4.13-a) 
and phase parts (Fig. 4.13-b) of electrical anisotropy 
perform better than the geometrical indices (Fig. 
4.13-c). On average, the algorithm classifies the root 
architecture correctly 80% of the time. In k-means, the 
number of neighbor’s "k" is the points to be considered 
while computing the value of a given point. For a test 
point, say p0, three nearest neighbor points p1, p2, p3 
will be computed. The optimal integer value of k ( > 0) 
varies with the application. In our case, since we have a 
small dataset, it is logical to have a smaller number of 
neighbors. We have chosen k = 3 as it is the smallest 
and the accuracy is consistent up to k = 5. The 
classification accuracy with the High Frequency (10 
kHz) signal is excellent for both the plants 1 and 2, 
with both magnitude and phase parts. But the low 
frequency has a lesser accuracy to classify plant1.  

 

Figure 4.13: K-nearest neighbor classification of root 
species based on a) , b)   and c) various geometrical ξ δφ
indices of the root system architecture. In a and b,  and  σ

𝑢
σ

𝑙
represents upper and lower bounds of root electrical 
properties, t1 and t2 represent day 25.2 and 31, red and blue 
represent the frequency of 10 Hz and 10 kHz, and r1, r2, and 
r3 represent different root radii. 
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3.4 Conclusion 
 

In this chapter, we extended the coupled model 
presented in Chapter 3 to a pot scale in 3-D to 
investigate the geometrical information contained in 
the electrical signatures of the soil-root continuum of 3 
contrasted root architectures (horizontal Anagallis 
Foemina, tilted Brassica, vertical Zea mays).  

To quantify the differences in terms of topology and 
geometry between species,  we computed different 
indices for synthetic root architectures such as fractal 
dimension ( ,  and ), geometrical anisotropy 𝐹𝐷

𝑥
𝐹𝐷

𝑦
𝐹𝐷

𝑧

( ), slope ratio ( ), anisotropy in root extent (𝐺𝐴𝐹 𝑆𝑅 𝐴𝐹
𝑒

), root convex hull volume ratio ( ), and total length (𝑉𝑅
). We observed that fractal dimensions obtained from 𝐿

different views of the root system were highly 
correlated confirming that roots are fractal-like 
structures as observed by Grift et al. (2010). We also 
observed that GAF and SR were more suitable to 
discriminate species as compared to other indices. 

From the synthetic pot experiment performed in this 
study, we observe that computed magnitude and phase 
part of the electrical anisotropy depend on root 
architecture and are discriminated among three 
categories of roots considered. While the magnitude 
part  is both dependent on root uptake pattern as well ξ
as root architecture, phase part  is dependent only on ξ
the root architecture at least for the assumed parameters 
of this study.  

We found that  and  were highly correlated to ξ δφ
geometrical indices with the correlation coefficient as 
high as 0.9. We also observed that electrical anisotropy 
quantities  and  contain similar information as , δφ ξ 𝐹𝐷

 or . While  has not been attempted to root 𝐺𝐴𝐹, 𝑆𝑅 𝐺𝐴𝐹
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systems (to the best of our knowledge),  has been 𝐹𝐷𝑥
thoroughly established index for studying root systems. 
For example,  is an indicator of root system 𝐹𝐷𝑥
complexity, soil exploration efficiency, plant response 
to soil saturation, drought response and salinity, water 
use efficiency, and root phenotyping (Bouda et al. 
2016). However, the FD index for the root system can 
only be obtained invasively and labor-intensive (Grift 
et al. 2011). In our study, we show that  and  δφ ξ
virtually contains similar information as  and is 𝐹𝐷𝑥
even more discriminatory between different root 
systems than . This shows the rich root 𝐹𝐷𝑥
geometrical information contained within the electrical 
properties of soil-root continuum. Within the scope of 
the simulations run in this study, we conclude that 
electrical anisotropy (  and ) is a very promising δφ ξ
proxy for monitoring root topology. 

The practical extensions of ideas developed in this 
chapter to the real-world require the design of 
electrodes capable of measuring effective properties in 
at least two different directions. However, designing 
plate electrodes is not easy and hence an easy approach 
would be to have several point electrodes operate to 
deduce effective properties as in the study of 
(Al‐Hazaimay et al. 2016).  

With a huge dataset of anisotropy measurements for 
each plant species and the different conditions, it is 
possible to classify the root architectures 
non-invasively with a good level of accuracy using 
machine learning algorithms such as K-nearest 
neighbor. As a logical extension of this electrical 
sensing method, we can combine the multi-frequency 
probing approach and machine learning to push the 
classification accuracy even further. The next step 
would be to test this methodology in real experiments 
with plants in pots. 
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PART IV 
 
ROOT 
PHENOTYPING AT 
FIELD-SCALE 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



5 IMAGING PLANT 
RESPONSES TO 
WATER DEFICIT 
USING ELECTRICAL 
RESISTIVITY 
TOMOGRAPHY 

 

Chapter adapted from: 

Rao S, Lesparre N, Orozco A. F.,Wagner F, Javaux M. 
Imaging plant responses to water deficit using 
electrical resistivity tomography. Accepted for 
publication in Plant and Soil. 2020 June. 

___________________________ 
 

ABSTRACT 
Monitoring root water uptake dynamics under water 
deficit (WD) conditions in fields  is crucial to assess 
plant drought tolerance. In this study, we investigate 
the ability of Electrical Resistivity Tomography (ERT) 
to capture specific soil water depletion induced by root 
water uptake. A combination of surface and depth 
electrodes with high spatial resolution (10 cm) was 
used to map 2-D changes of soil EC changes in an 
agronomic trial with different grass and forb species. A 
synthetic experiment with a mechanistic model was 
performed to assess the ability of the electrode 
configuration to discriminate root water uptake 
patterns. The synthetic analysis allowed to us to define 
two synthetic indices (depletion averaged depth and 
extent), which statistically discriminate between 
species specific depletion patterns.  
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The time-lapse analysis of the ERT imaging shows that 
different root water uptake patterns can be delineated 
for measurements collected under WD conditions but 
that patterns are not so easily recovered from data 
collected under well irrigated conditions. ERT seems to 
be able to discriminate root water uptake dynamics 
between species, in WD conditions. Yet, only changes 
of ERT-retrieved water content or electrical resistivity 
in two weeks were able to adequately delineate water 
depletion peak and extent with an accuracy of around 5 
cm. We show that Cockstfoot and Ryegrass had 
shallower soil water depletion zones than white clover 
and white clover combined with Ryegrass. ERT is a 
well-suited method for phenotyping root water uptake 
ability in field trials under WD conditions.  

 

4.1 Introduction 
 

Developing and characterizing crops tolerant to 
drought and able to keep high yields under limited soil 
water resources are key challenges to face increasing 
global food demand in a changing environment. Root 
systems control plant access to soil water and are thus 
key organs for drought tolerance. Plant breeders are 
interested to optimize plant performances by 
understanding the soil exploration dynamics of roots, 
their reaction to soil water spatial distribution and 
distribution of root hydraulic properties between root 
orders and root age (Meunier et al. 2020). Yet, the 
ability to easily, accurately, and extensively 
characterize root traits or phenes (i.e. characteristic 
features) is a major challenge in the field of root 
biology (Meister et al. 2014). Novel root phenotyping 
techniques, i.e., tools to characterize root system 
properties and functions in situ (Atkinson et al. 2019) 
are instrumental to develop these new genotypes. 
Typically, most of the current root phenotyping is 
performed on young plants grown in aeroponics, or 
small containers filled with non-natural substrates. 
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Plant's ability to deal with the heterogeneous 
environment is therefore difficult to assess. 
Recognizing the limiting interest of root phenotyping 
in pots, Passioura (2012) suggested that field 
phenotyping is needed to ensure that plant genotypes 
can deal with the natural temporal and spatial 
variability of the environment.  

Root water uptake distribution is a key factor to assess 
plant tolerance and adaptation to WD conditions. Root 
water uptake is not the only function of root system 
architecture and soil water availability, but also of root 
hydraulics (Leitner et al. 2014; Meunier et al. 2017). 
Hence, the dynamics of root water uptake reveals plant 
functioning, in particular under WD. Yet, root water 
fluxes are impossible to monitor in the field, and often 
soil water depletion resulting from root uptake is 
measured instead. However, soil water depletion 
patterns cannot always be linked to root water uptake 
distribution due to soil water movements (Vandoorne et 
al. 2012). In wet conductive soils, water uptake can 
take place without a change of soil moisture, for 
instance. To associate water depletion to uptake 
patterns, soil water fluxes must be limited.  

Recently Cimpoiaşu et al. (2020) reviewed specific 
advantages and limitations of geoelectrical methods to 
monitor root zone processes and structure and showed 
that Electrical Resistivity Tomography (ERT) is well 
suited to monitor soil water content evolution and thus 
soil water depletion patterns in situ. High-resolution 
root-zone soil moisture monitoring can reveal the 
differences between the root system of different species 
under varying climatic conditions. For example, ERT 
imaging conducted on a transition zone from forest to 
grassland showed that soil moisture dynamics at 
different seasons were significantly different for forest 
and grassland (Jayawickreme et al. 2008). In their 
study, the forest showed higher sub-surface resistivity 
changes as compared to grasslands.  
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Monitoring soil water depletion patterns via ERT has 
shown to provide useful information on root density 
(Amato et al. 2008; Paglis 2013), soil compaction due 
to tillage (Besson et al. 2004), soil water content 
(Michot et al. 2003; Garré et al. 2011; Beff et al. 2013; 
Dahlin et al. 2014) thereby promising itself as a 
valuable tool to monitor soil-root system. Because of 
its larger monitoring depth and its nonlinear relation to 
water content, ERT seems to be promising in 
characterizing deep changes of soil matric potentials, 
more directly related to plant WD than water content 
(Whalley et al. 2017). Several studies have investigated 
the potential of ERT to characterize soil water 
abstraction patterns. Panissod et al. (2008) 
demonstrated that 2D ERT could be used to investigate 
soil water patterns in maize fields. Srayeddin and 
Doussan (2009) used ERT to compare soil water 
depletion patterns of maize and Sorghum and found 
Sorghum to be more efficient in water extraction as 
compared to Maize. However, in water stress 
treatment, the water uptake front could not be 
quantified beyond 50-60cm depth due to poor 
sensitivity of surface electrode configuration 
(Srayeddin and Doussan 2009).  Brillante et al. (2015) 
applied ERT to vineyards. Ain-Lhout et al. (2016) 
monitored soil moisture in the root zone system of a 
tree.  Other studies focused on characterizing soil 
moisture differences between contrasted vegetation 
and/or soil types (Jayawickreme et al. 2008; Nijland et 
al. 2010; Garré et al. 2013), also based on 2D-ERT. All 
these studies used surface electrodes to estimate 2D 
soil moisture space-time distribution in open 
ecosystems or for crops with large interrow distance, 
which facilitates the observation of water abstraction 
patterns. More recently, Whalley et al. (2017) 
successfully used surface ERT at field scale to 
distinguish wheat genotypes based on  their soil water 
profile evolution.  

However, ERT faces several challenges when used for 
field phenotyping. Small differences in rooting or water 
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uptake depths between genotypes might result in large 
differences in terms of tolerance (Manschadi et al. 
2006), which means that high spatial resolution is 
needed. Therefore, contrast between uptake patterns of 
different genotypes is not always visible with ERT 
(Whalley et al. 2017). Also, the sensitivity of ERT 
measurements to root and soil water depletion is not 
always sufficient (Rao et al. 2019), and can even be 
decreased by additional processes such as solute 
distribution or too wet soil conditions. Furthermore, 
commonly used surface electrode configuration may 
not be suitable for phenotyping roots that need higher 
spatial resolution in the sub-meter scale where 
differences between different root systems occur 
(Srayyedin et al. 2009). Because of ill-posed nature of 
ERT inversion, it is necessary to differentiate the 
changes observed in ERT inversions in terms of 
artifacts and physiology of plants to have meaningful 
results.  

In this study, our general objective is to investigate the 
ability of ERT to detect slight differences indepletion 
depths between plant species in a quantitative way.  
Our specific questions were (i) how to analyze ERT 
field data to detect slight changes in water depletion? 
(ii)  what is the spatial resolution that is needed and 
that can be achieved to discriminate plant uptake 
behaviors? To answer these questions, we develop a 
new quantitative approach to discriminate soil water 
abstraction depths and extent based on a synthetic 
experiment with process-based model. This 
methodology was the used to interpret 2-D ERT field 
data in an agronomic field trial comparing different 
forbs and grass species, with potentially different root 
functioning as a test for our method. 

 

4.2 Materials and Methods 
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4.2.1 Field Trial Description 
 

The experimental field is located in Corroy-le-Grand 
(Belgium), in the De Marbais University farm. A 
random-block field trial was established in 2012 for 
comparing combinations of grass and forb species 
under two contrasted treatments: control (normal 
weather conditions) and water deficit conditions (WD 
through a shelter preventing rainfall for six week). The 
whole field trial was organized in blocks (7.2 m x 7 m) 
made of four plots (1.5 m width x 7 m length each) 
with a separation of 30 cm between plots (Fig. 5.1). In 
this study, we focused on four plots with the following 
species: cocksfoot (C), ryegrass+white clover mixture 
(R+WC), white clover (WC) and ryegrass (R).  
Cocksfoot (Dactylis Glomerata) and ryegrass (Lolium 
Perenne) are both deep-rooted perennial grasses. White 
clover (Trifolium repense) is a perennial legume plant 
commonly grown in mixture with ryegrass in pastures. 
It is typically described as a shallow-rooted plant but 
its root system can reach 1m-depth (Nichols et al. 
2016). 

The soil type is a luvisol (loamy soil developed on 
loess) with 6 different soil horizons: Ap1, Ap2, Ap3, 
Bt1, Bt2 and C in WD treatment and 5 soil horizons in 
control (all except Bt2) as shown in Fig. 5.1-b. Due to 
natural heterogeneity, the WD and control treatment 
zones had slightly different soil horizons as revealed by 
soil trenches (Fig. 5.1-b). Soil trenches were dug to 
estimate root distribution profiles for each species in 
each plot using the Tardieu profile method (Tardieu 
1988).  We used a grid of 5 cm x 5 cm to count the root 
numbers to obtain a 2-D distribution of Root Number 
Density (RND) at the end of the season.  

The soil hydraulic properties were characterized using 
the evaporation method (Bezerra-Coelho et al. 2018) 
on 250 cm³ undisturbed soil cores sampled from the 
different horizon and the Hyprop-fit software 
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(Pertassek et al. 2015) to fit the experimental data with 
the Van-Genuchten-Mualem (VGM) soil hydraulic 
model. A nearby weather station provided the 
evapotranspiration (ET0) and precipitation information. 
The evapotranspiration, precipitation and root number 
density are shown in Fig. 5.2.  

  

 

Figure 5.1:  a) A schematic view of an individual block 
showing the ERT electrodes at the center plane (y = 0) used 
for two-dimensional ERT imaging. The black dots represent 
the surface point electrodes while the black squares are the 
borehole ring electrodes. Inside the ERT block, one binary 
mixture (R+WC: ryegrass+white clover) and three 
monocultures (C: cocksfoot; WC: white clover; R: ryegrass) 
are present. Location of TDR probes (triangles) installed at 
different depths in the ryegrass plot. Different soil-horizons 
are indicated along with TDR locations (triangles) for: b) 
control and c) water deficit treatments. 
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Figure 5.2:  a) Log of root number density measured in the 
field, b) weather condition in the control plot and c) weather 
condition in water deficit plot. 

4.2.2 Field ERT 
 

ERT data acquisition 

In 2016, surface and depth ERT electrodes were 
installed regularly along 2-D planes, each of them 
crossing the middle of four plots (see Fig. 5.1-a): one in 
WD, the other one in control conditions.  

For ERT data acquisition, we used 123 electrodes, 
including 48 surface electrodes (with a separation of 
0.15 m) and 75 electrodes distributed along 13 
boreholes (Fig. 5.3). Boreholes were made of PVC 
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sticks, with embedded stainless-steel rings used as 
electrodes, with a diameter of 46 mm for each ring 
(same as Beff et al. 2013), the separation between 
electrodes increases with depth (Fig. 5.1-a). There are 
four surface electrodes between each pair of borehole 
sticks.  

The ERT data was collected using an ARES II 
10-channel automatic resistivity system (from GF 
instruments®). ERT monitoring data set consisted of 
three-time stamps (denoted by t1 to t3), with data 
collected along the experimental block every week 
along three consecutive weeks. The exact dates of 
measurements were t1: 03/08/2017, t2: 09/08/2017 and 
t3:16/08/2017.  For the ERT measurements, we used 
current injections with 100% duty cycle, with a pulse 
length of 300 ms, and stacking varying between 3 and 
4 repetitions.  

The injection scheme comprised of 3084 quadrupoles, 
out of which 450 quadrupoles were reciprocal readings 
(collection of the same quadrupole after interchanging 
the current and potential dipoles). To describe the 
configuration in the injection scheme, we denote 
current injecting electrodes as AB and potential 
measuring electrodes as MN. The injection scheme 
used in the experiment is categorized into: 
a) Scheme 1 (Surface measurements only): Gradient 

(Schlumberger) and dipole-dipole configuration 
(Dahlin and Zhou 2006) among the 48 surface 
electrodes spanning 7.2 m representing 20% of total 
quadrupoles. The dipole-dipole scheme consisted of 
skip-0 (dipole spacing of one electrode or 15 cm), 
skip-1 (dipole spacing of two electrodes or 30 cm) 
and skip-2 (dipole spacing of three electrodes or 45 
cm) protocols. Each current injection consisted of 
five potential measurements with a separation 
varying from 15 to 45 cm. Gradient configuration 
had a maximum current electrode separation 
distance of 60cm and each current injection had 5 
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simultaneous potential measurements with a dipole 
spacing of 1 to 3 electrodes (15 to 45 cm).  

b) Scheme 2 (Boreholes only): (i) AB on a given 
borehole and MN on its adjacent borehole, and (ii) 
AM on a given borehole and BN on its adjacent 
borehole. Only two adjacent boreholes were used in 
the injection scheme, i.e., there was no 
measurement or injection between the first and 
third borehole. This scheme represented about 20% 
of the total quadrupoles.  

c) Scheme 3 (Surface-borehole interacting scheme): 
AB (or MN) on surface electrodes located between 
any two borehole sticks and MN (or AB) on 
boreholes situated directly below surface electrodes 
with a dipole spacing of one or two for current 
injection and for each AB we had five to seven 
MN’s with skip-0 and skip-1 spacing. This scheme 
represented the remaining 60% of the total 
quadrupoles.  

 
ERT inversion theory 

The pyGIMLi software (Rücker et al. 2017) was used 
for ERT inversions, where the Gauss-Newton scheme 
is used to iteratively minimize the following objective 
function ( :   ϕ)

       ϕ = ϕ
𝑑

+ λϕ
𝑚

= ‖ 𝑑´−𝑓 𝑚´( )
𝑙𝑜𝑔 1+𝐸

𝑚𝑜𝑑𝑒𝑙( ) ‖
2

2
+ λ‖𝑊 𝑚´ − 𝑚´

0( )‖
2

2

(5.1) 

  corresponds to the data misfit between the ϕ
𝑑

measured data vector ( ) and the data estimated by the 𝑑´
model ( ) down-weighted by the error model (𝑓 𝑚´( )

).  represents the model misfit and is 𝐸
𝑚𝑜𝑑𝑒𝑙

ϕ
𝑚

multiplied by the regularization parameter  λ
determining the weighting of the model versus data 
misfits.  stands for the log of measured apparent 𝑑´
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resistivities from real/numerical experiments,  is a 𝑚´
0

homogeneous starting model vector,  is a first-order 𝑊
smoothness regularization matrix used to stabilize the 
inverse problem that is inherently ill-posed. An 
L2-norm is adopted as smoothed shapes of the 
subsurface properties are inferred. The regularization is 
made anisotropic by having a smaller value for 
smoothness in the vertical direction as compared to the 
horizontal direction for resolving horizontal layering of 
soil horizons.  

We quantified field data error using the analysis of 
normal-reciprocal misfit, first described by LaBrecque 
et al. (LaBrecque et al. 1996). In our measurements, we 
computed an absolute error of 0.04 Ω and a relative 
error of 12% (see supplement Appendix B for details). 

The optimum regularization constant  was determined λ
using L-curve analysis (Hansen 1992; Bergmann et al. 
2017). For different values of  ranging from 5 to 1000, λ
we computed  and . The  value for which the  ϕ

𝑑
ϕ

𝑚
λ ϕ

𝑑
vs  curve has a minimum distance to the origin is ϕ

𝑚
chosen as the optimum value (see supplement 
Appendix C for details).  

The ratio by which  is reduced for vertical contrast is λ
determined by  that is fixed to 0.5 meaning that the 𝑍

𝑤
smoothness regularization strength in the vertical 
direction is half of the horizontal one. We chose  of 𝑍

𝑤
0.5 and a  of 150 for the inversion of synthetic data. λ
We found that the choice of  played an important 𝑍

𝑤
role in reducing inversion artifacts and the chosen 
value of 0.5 produced least artifacts when visually as 
well as quantitatively compared with the original 
model (see supplement Appendix D for details).  

We used the relative root mean square error (rrms) and 
chi-square  value to assess the quality of inversion: χ2
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                                              .100%                               𝑟𝑟𝑚𝑠 =
∑ 𝑑´−𝑓 𝑚´( )

𝑑´⎡⎣ ⎤⎦
2

𝑁

(5.2) 

                                        =                                      χ2
∑ 𝑑´−𝑓 𝑚´( )

𝐸𝑚𝑜𝑑𝑒𝑙⎡⎣ ⎤⎦
2

𝑁

(5.3) 

where N is the length of the data vector ( ). Here the 𝑑´
inversion is stopped when the rrms value reaches 2% or 

 is around 5 to 8 (Günther and Rücker 2006).  χ2

Optimized resistivity fields were then 
temperature-corrected at 25°C (Luo et al. 2019) based 
on field thermometers (see next section) assuming 
homogeneous lateral temperature distribution and 
linear depth interpolation. 

4.2.3 Time Domain Reflectometry (TDR) and 
Pedophysical Model 
 

Besides ERT, we installed nine TDR probes along the 
ryegrass plant plot at different depths (i.e., soil 
horizons) for monitoring on an hourly basis soil water 
content ( ) and electrical resistivity ( ) from θ

𝑇𝐷𝑅
ρ

𝑇𝐷𝑅
29/05/2018 to 26/10/2018. Temperature sensors were 
installed at the same depths as the TDR for electrical 
resistivity temperature correction. We followed a 2% 
decrease in electrical resistivity per degree centigrade 
(Whalley et al. 2017; Luo et al. 2019). 

A median filter with a window size of 3 hours was used 
to filter out the outliers in   and . The filtered ρ

𝑇𝐷𝑅
θ

𝑇𝐷𝑅
data were combined per groups of the pedological 
horizon (Ap and Bt) for WD and control conditions and 
used to characterize soil petrophysical functions per 
horizon, by fitting the following model:                                
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                                                                      θ = 𝑎 𝑙𝑜𝑔
10

(ρ)𝑏 + θ𝑟

(5.4) 

where  and b are the fitting parameters,  is the 𝑎 θ𝑟
residual water content.  The fitting parameters for each 
soil horizons along with RMSE of fits are given in 
Table 5.1, and  is 0 except for the C layer (Table θ𝑟
5.2). The fits along with the TDR data are shown in 
Figure 5.3.  

 

 

Table 5.1:  Empirical fitting parameters found using 
non-linear optimization presented in Equation 5.4 for 
different soil horizon and their corresponding RMSE. 
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Horizon  𝑎  𝑏  θ𝑟  𝑅𝑀𝑆𝐸

Ap (Ap1, 
Ap2, Ap3) 

0
.4528 

-1.7
299 

0.01
7 

Bt (Bt1, 
Bt2) 

1
.107 

-3.6
19 

0.02
5 

C 1
8.8792 

-9.0
224 .1 

0.01
2 



 

Figure 5.3:  Combined TDR measurements in 2018 for 
water deficit and control conditions (electrical conductivity (

) versus water content θ)) at different soil horizons: a) σ
𝑇𝐷𝑅

Ap layer, b) Bt layer, and c) C layer. The color in the scatter 
plot indicates the depth of the TDR probes and n is the no. 
of probes. The red line represents the empirical model fit 
(Eq. 5.4) to the data.. 

4.2.4 Numerical Experiments 
 
We conducted a numerical experiment with the 
following objectives: (1) test the reliability of the ERT 
injection scheme to capture the variability of 
subsurface resistivity and to investigate the sensitivity 
of ERT to the evolution of root water uptake patterns; 
(2) improve the interpretation of field ERT results 
through the comparison of synthetic data, and (3) 
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formulate indices quantifying the uptake behavior of 
plants.  

Figure 5.4 describes the detailed workflow for the 
numerical experiment and its connection to real field 
data interpretation. We combined water-flow 
simulations (blue in Fig. 5.4) with forward and inverse 
ERT simulations (red in Fig. 5.4) to generate synthetic 
experiments representing potential ERT field 
observations to later compare with real field data.  

Water flow simulations 

We used a mechanistic soil-plant water flow model 
R-SWMS (Javaux et al. 2008) to simulate the evolution 
of soil water content distributions in the field trial for 3 
weeks (between 03/08/2017 and 16/08/2017). The 
simulation domain is a block of 7.2 m x 0.1 m x 1.5 m 
crossing the middle of the 4 plots corresponding to the 
location of the vertical ERT electrode plane. Two 
simulations were run: one for the control and one for 
the WD conditions, with the corresponding, observed 
rainfall, irrigation and evapotranspiration times series. 

The soil domain consisted of five layers corresponding 
to the observed soil horizons shown in Fig. 5.1-b and 
Fig. 5.1-c (control and WD treatments have a slightly 
different horizon distribution). Soil hydraulic properties 
of each layer were parameterized with the VGM model 
(see Table 5.2 in the supplement Appendix E). 

The soil boundary conditions for the control treatment 
consisted of the precipitation time series from weather 
station complemented by manual irrigation (Fig. 5.2-c).  
Free drainage was used as soil bottom boundary 
condition. For WD treatment, a no-flux soil top 
boundary condition was used as neither rainfall nor 
irrigation happened during the simulation period. 
Evaporation fluxes between plots were neglected. To 
generate realistic 3-D initial conditions at the beginning 
of our experimental period, we ran the warm-up for 30 
days. The initial soil condition at time -30 days was 

172 
 



hydrostatic equilibrium with a saturated soil at the 
depth of -316 cm. 

Root water uptake of the different plant species was 
simulated using the macroscopic parameterization 
proposed by Couvreur et al. (2012). We normalized the 
measured RND of the 4 plots as a proxy for soil uptake 
fraction (SUF) distribution (Fig. 5.2-b). We assumed 
that the equivalent conductance of the root system 
(Krs) equals the compensatory root water uptake 
conductance (Kcomp) (see Table 5.3 of supplementary 
material). With this assumption, differences between 
root water uptake patterns will only be due to the 
difference between RND distributions and to available 
water in the soil. This means that no differencee 
between root hydraulic properties of the different 
species were considered. The ET0 estimated from the 
weather station data was used as a plant flux boundary 
condition. 

ERT simulations - Generation of synthetic resistivity 
distributions 

Modeled water content maps were transformed to 
electrical resistivity fields using Equation 5.4. The 
pyGIMLi software was used for ERT forward 
simulations on the synthetic resistivity model, which 
solves Poisson’s equation in 2.5-D to compute the 
modeled ERT data with the same injection scheme than 
in reality. An error was added to these modeled ERT 
data, which followed the field error model. Inversion of 
the modeled ERT data was performed using the same 
methodology as in the field. 

173 
 



 

Figure 5.4:  Methodology for synthetic experiment and its 
relation to the field experiment, the blue area corresponds to 
water-flow simulations and the red area shows the ERT 
simulations. The region outside the red and blue areas 
corresponds to real field experiments. 

4.2.5 Gaussian fits 
 

In WD treatment, any increase in electrical resistivity is 
supposed to be due to a water content decreased 
generated by plant water uptake. The 2-D distributions 
of water content at t3 and t1 denoted by  and θ (𝑡3)

 are obtained by applying petrophysical relation θ (𝑡1)
(Eq. 5.4) to 2-D distributions of electrical resistivity at 
t3 and t1 denoted by  and . To characterize ρ(𝑡3) ρ(𝑡1)
plant-specific depletion patterns, we compute the 2-D 
time difference of resistivity and water content defined 
as: 

    δρ = 𝑙𝑜𝑔(ρ(𝑡3)) − 𝑙𝑜𝑔(ρ(𝑡1))
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and the change of water content between t1 and t3 is 
defined as: 

        δθ =  θ (𝑡3) −  θ (𝑡1)

The 1-D medians at each depth from 2-D distributions 
of  and  was computed for each plant and a δρ δθ
Gaussian curve was fitted to the 1-D medians of  and δρ

 profiles (  and ): δθ δρ
𝑓𝑖𝑡

δθ
𝑓𝑖𝑡

 δρ
𝑓𝑖𝑡

=  𝐴
δρ

* 𝑒𝑥𝑝
− δρ−µ

𝑍,δρ( )2

2*σ
𝑍,δρ

2( )
 δθ

𝑓𝑖𝑡
=  𝐴

δθ
* 𝑒𝑥𝑝

− δθ−µ
𝑍,δθ( )2

2*σ
𝑍,δθ

2( )
From the fitted Gaussian function, the six parameters 
of a Gaussian function were then optimized to fit these 
1-D profiles: , , , ,  and . The  𝐴

δρ
 𝐴

δθ
µ

𝑍,δρ
µ

𝑍,δθ
σ

𝑍,δρ
σ

𝑍,δθ
mean parameter   or    represents the depth at µ

𝑍,δρ
µ

𝑍,δθ
which depletion is the largest (maximum depletion 
depth) while  or  represents the extent of the σ

𝑍,δρ
σ

𝑍,δθ
depletion as illustrated in Figure 5.5. The amplitude 
parameters ( , ) denotes the magnitude of change 𝐴

δρ
 𝐴

δθ
in water content or resistivity.  

.  
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Figure 5.5:  Illustration of Gaussian fits for discriminating 
plant uptake behavior: a) plant uptake region is shallow, but 
the extent is wide, b) uptake region is deeper while extent is 
narrow, and c) uptake is shallow and extent is narrow. The 
yellow line indicates possible ERT observation while the 
blue line is the Gaussian fit. The gray shade indicates the 
uptake extent (  or )while dotted line indicates σ

𝑍,δρ
σ

𝑍,δθ
maximum depletion depth (  or ). µ

𝑍,δρ
µ

𝑍,δθ

 

4.3 Results  
 

ERT Field Experiment results: Qualitative comparison 
between WD and control conditions 

In Figures 5.6-a and b, we show the inversion results of 
field data under control and WD conditions, 
respectively. The inversion converged after 3 to 5 
iterations with rrms < 2 and  < 8 (see the textbox to χ2

the right of Fig. 5-a). Since we had higher 
measurement errors in the WD treatment, the inversion 
has higher  values as compared to the control χ2

treatment. Since only small regions show the log of 
resistivity higher than 2.2 or lower than 1.2 in both WD 
and control treatments, we cut our color scale from 1.2 
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to 2.2 in Figs. 5.6-a and b to compare both treatments 
simultaneously. 

Conspicuously, the impact of treatments WD versus 
control is well captured by the ERT imaging. WD plots 
are increasingly resistive from t1 to t3 whereas the 
opposite scenario happens for the control treatment. In 
the controlled plots, rainfall and soil infiltration 
decrease the electrical resistivity of the surface layer as 
shown by the fading red region in the top horizon (Z < 
0.3 m) from t1 to t3. On the contrary, in WD treatment, 
the root water uptake is the main driver of electrical 
resistivity changes. Indeed, such a process is 
highlighted by the widening drying front of the light 
green region (corresponding to ) 𝑙𝑜𝑔 (ρ) = 1. 75 Ω. 𝑚
from t1 to t3 in Fig. 5.6-b indicating a deeper root 
water uptake (Z < = -1 m).  

Some differences between plants (plots) are visible in 
both control and WD conditions. In control, the region 
corresponding to to  log 𝑙𝑜𝑔 ρ( ) = 1. 56  1. 65 Ω. 𝑚
goes deeper (Z > 0.5m) for plants R+WC and WC as 
compared to the plants C and R (Fig. 5.5a). Similarly, 
in WD, the region corresponding to 

goes deeper (Z > 0.5m) for log 𝑙𝑜𝑔 ρ( ) = 1. 75  Ω. 𝑚 
the first three plants (C, R+WC and WC) compared to 
R (Fig. 5.6-b). 

The inversion results in both treatments show a slightly 
shallower depletion zone of R as compared to the first 
three plants (C, R+WC, and WC). However, large 
variability in electrical resistivity is also visible within 
plots, which makes the proper quantification of the 
depletion depth difficult to assess. 
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Figure 5.6:  Inversion results of field data at different times 
for a) control and b) water deficit treatments. Inversion 
quality parameters are shown to the right. The black dotted 
line represents the positions of different plants. 
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4.3.1 Synthetic Experiments  
 

Forward simulations 

In Figures 5.7-a and b, R-SWMS simulations show 
contrasted soil water content patterns for control and 
WD treatments. In both control and WD treatments, we 
observe the effect of root water uptake on soil water 
content (dark brown patches in Figs. 5.7-a and b). The 
water content distribution in control treatment is quite 
homogeneous below 0.75 m (Fig. 5.6-a) while it is the 
opposite in WD treatment (Fig. 5.7-b). We see the 
impact of root water uptake in WD treatment up to 1.5 
m in depth (dark brown patches in Fig. 5.7-b at Z > 1 
m).  In control treatment (Fig. 5.7-a), regular rainfall 
events between t1 and t3 (see Fig. 5.2-b) fade out the 
soil water depletion pattern in the top 25 cm of the soil 
(increasing blue front in top 25 cm of Fig. 5.7-a). In 
WD treatment, we see the impact of root water uptake 
in the form of a deepening drying front between t1 and 
t3 (expansion of dark brown patches in Fig. 5.7-b).  

The differences between (C, R+WC, and WC) and R 
are evident in both treatments. The plant R does not go 
deeper than 30 cm while other plants influence the soil 
water content much below 30 cm (Fig. 5.7-a). 
Although slight differences between species can be 
observed for the control treatment (Fig. 5.7-b), the soil 
water content pattern evolution is mainly controlled by 
rain and not root characteristics.  

Figures 5.6-c and d show the corresponding electrical 
resistivity fields for control and WD treatments, 
respectively obtained with the petrophysical relations 
(Fig. 5.3). Similar to field data in Fig. 5.5, only small 
regions in our synthetic experiment showed the log of 
resistivity higher than 2.2 or lower than 1.2 in both 
treatments. Therefore, we cut our color scale from 1.2 
to 2.2 in Figs. 5.7-c and d to compare both treatments 
simultaneously. Although the objective of the synthetic 
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experiment was not to fit the field observations, we can 
still make a qualitative comparison of the observed 
patterns. The fading of the high resistive region (log(ρ) 
> = 2.2) in the top horizon of the control condition in 
Fig. 5.7-c closely resembles the experimental results of 
Fig. 5.6-a. However, in WD condition, comparing Figs. 
5.7-d and 5.6-b show that field data are more resistive 
especially at depth 0.5 m < Z < 1 m and structurally 
more heterogeneous in terms of uptake front. These 
differences in resistivity magnitude in simulations and 
experiments can arise due to uncertainty in the 
petrophysical function used to convert R-SWMS water 
content to electrical resistivity.  

 

 

Figure 5.7:  Simulated evolution of water content ( ) θ
distribution from t1 to t3: a) control treatment and b) water 
deficit treatment and its corresponding evolution of 
electrical resistivity ( ): c) control treatment and d) water ρ
deficit treatment. The black dotted line represents the 
positions of different plants. 
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ERT inversion  

Figures 5.8-a and b show the forward and inverted log(
) at t3 for control and WD treatments. We focused ρ

only on the first-meter depth, where the sensitivity is 
higher (see supplement material section C). It is 
observed that the inverted log( ) field generally keeps ρ
the main features than the forward simulations. In 
general, the high-resistivity zones are retrieved for both 
treatments and all (combinations of) plant species. 
However, while the difference between species is 
clearly in the control treatment, no obvious difference 
between patterns seems to appear in the WD treatment. 

Figures 5.8-c and d show the time difference or the 
change of log resistivity between t1 and t3 ( ) of the δρ
forward and inverted datasets. Areas with positive  δρ
correspond to the zone from which soil water was 
extracted. Forward simulations for the control 
treatment show no increase in electrical resistivity (Fig. 
5.8-c), probably due to the rainfall events. Even if, in 
general, the inversion recovered well the main patterns, 
no information on root water uptake depths can be 
inferred from the control treatment. 

In the WD treatment, differences between species are 
much clearer in  (Fig. 5.8-d) than in log( ) (Fig. δρ ρ
5.8-b). Interestingly, not only the magnitude of  but δρ
also its spatial distribution are affected by plant species. 
Although the sharp boundary of depleted zones is 
blurred in the inversion results in Figure 5.8-d, possibly 
due to the smoothness constraint in the ERT inversion, 
the ranking of plants uptake depth seems to remain. For 
example, notice the differences between (C, R+WC, 
and WC) and R in Figure 5.8-d. 
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Figure 5.8:  Comparison of R-SWMS simulated forward 
data (first row) and ERT inversion of R-SWMS simulated 
data (second row). a) log( ) at t3 in the control treatment, b) ρ
log( ) at t3 in water deficit treatment, c) The change of log ρ
resistivity between t1 and t3 ( ) in control treatment, d) δρ
The change of log resistivity between t1 and t3 ( ) in water δρ
deficit treatment. The color bar in Figs. (a) and (b) has been 
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cut at a specified scale for visualization purposes. The black 
dotted line represents the positions of different plants. 

4.3.2 Using ERT to recover plant-specific depletion 
zones 
 

Synthetic Experiments 

To better visualize differences between plant behaviors 
under water-limited conditions, plant-specific median 
profiles of several variables related to water depletion 
are shown in Figure 5.9-a. The water depletion  δθ
profiles of the forward simulations (dashed black lines) 
is compared to inverted  profiles (dashed red profile) δρ
and to water depletion profile  obtained from δθ
inverted ERT (dashed blue line). Besides, the fits of a 
Gaussian distribution function on ERT-inverted  and δθ

 profiles are shown in the same colors (solid lines).  δρ

The use of a Gaussian function seems to be adequate to 
fit the depletion profiles, as observed in Figure 5.9-a. In 
general, the fitted Gaussian distributions match pretty 
well the inverse  and  profiles, which support its δθ δρ
use for further statistics.  

The comparison between forwarding  and inverse  δθ δρ
profiles (black and red dashed lines) show some 
discrepancies. However, when petrophysical relations 
are used to retrieve profiles (blue lines), the match δθ 
to forward (dashed black lines) improve δθ 
significantly especially for WC and R. We observe that 
in general, inversely retrieved  are more dispersed δθ
than direct  profiles, with lower peaks.  δθ

We used the Gaussian function parameters ( , , µ
𝑍,δρ

µ
𝑍,δθ

 and ) to compare the 1-D profiles in terms of σ
𝑍,δρ

σ
𝑍,δθ

maximum depletion depth and depletion zone extent, 
respectively.  These statistics are shown in Figures 
5.9-b and c for each (combination of) species and 
compared to the forward  statistics. Our forward δθ
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simulations show a maximum depletion depth 
generally below 0.5 m with the following ranking: R < 
C < R+WC < WC.  If we compare  to  µ

𝑍,δθ
µ

𝑍,δρ
obtained by inversion, we observe that the ranking 
between species is retrieved  for all species except for  
R+WC and WC, which are inverted. For C and R+WC, 
we observe ERT-retrieved  is usually closer to the µ

𝑍,δρ
forward  (less than 5 cm difference) than the µ

𝑍,δθ
inverted . For C and R+WC, the forward µ

𝑍,δθ
simulation lies between inverted  and   and for µ

𝑍,δρ
µ

𝑍,δθ
WC, we observe ERT-retrieved  is usually closer to µ

𝑍,δρ
the forward  (less than 5 cm difference) than the µ

𝑍,δθ
inverted and for R, this is the opposite. In general, µ

𝑍,δθ
 

the difference between forward and inverted maximum 
depletion depth is always lower than 10 cm. In terms of 
depletion extent, it is observed that ERT-retrieved  σ

𝑍,δρ
always overestimate forward . On the opposite, the σ

𝑍,δθ
match between forward and inverse is remarkably σ

𝑍,δθ
 

good (less than 5 cm difference). The nonlinearity of 
the petrophysical relation explains why sometimes the 
use of  leads to the wrong estimate of  or  . δρ µ

𝑍,δθ
σ

𝑍,δθ
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Figure 5.9:  a) The 1-D median of the change of log 
resistivity between t1 and t3 ( ) and negative of the change δρ
of water content between t1 and t3 ( ) for different plants δθ
in water deficit condition (dashed lines) and the Gaussian fit 
(solid line). The blue dotted lines represent -  derived from δθ
ERT inversion while the black dashed line represents the 
R-SWMS forward modeled -  (ground truth). b) maximum δθ
depletion depth of 1-D median of  and -  as a function δρ δθ
of plant species. The red solid lines represent  derived µ

𝑍,δρ
from Gaussian fit to ERT derived , the blue solid lines δρ
represent  derived from Gaussian fit to ERT derived -µ

𝑍,δθ
δθ

, while black dashed line represents the maximum depletion 
depth of 1-D median of R-SWMS forward modeled - . c) δθ
depletion extent of 1-D median of  and -  as a function δρ δθ
of plant species. The red solid lines represent  derived σ

𝑍,δρ
from Gaussian fit to ERT derived , the blue solid lines δρ
represent  derived from Gaussian fit to ERT derived -σ

𝑍,δθ
δθ
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, while black dashed line represent  derived from σ
𝑍,δθ

Gaussian fit to R-SWMS forward modeled - . δθ

Field data 

Figures 5.10-a and b show the retrieved  δρ
distributions of the field data for control and water 
deficit conditions. Like in the synthetic experiment, 
depletion zones are hardly visible in the control 
treatment. Root water uptake depletion zones are 
compensated by water infiltration and hide thereby 
plant-specific uptake patterns (Fig. 5.10-a). We will, 
therefore, focus on the WD treatment data.  

When we compare Figures 5.10-b to Fig. 5.8-d, 
resistivity change patterns in the real field are much 
patchier than in the synthetic experiment. This can 
partly be associated with the inversion, which already 
generated patches in the synthetic experiment (see 
bottom subplot in Fig. 5.8-d). Also, variability in the 
actual soil hydraulic and petrophysical properties might 
have further increased the variability in  spatial field δρ
due to their nonlinearity. 

Our synthetic experiments demonstrated that a 1-D 
profile of temporal changes helps visualize differences 
between species. We applied this method here to the  δρ
and  fields per plant (after using petrophysical δθ
relations). Figure 5.10-c shows the  and  1-D δρ δθ
median profiles, together with the corresponding 
Gaussian fits. Large changes of resistivity are observed 
in the upper soil horizon (between 0 and 25 cm depth) 
of all plant plots. Yet, when we use the petrophysical 
relations to transform  to , these large   changes ρ  θ δρ
translate into much lower changes in terms of  (blue δθ
dashed lines in Fig. 5.10-c). These large changes in 
resistivity observed in experiments (not observed in 
model) are probably due to evaporation, which was not 
included in our synthetic experiment. To discriminate 
water uptake from evaporation impact on water 
depletion, we fitted the Gaussian relations on the  δρ
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and  profiles only below 25 cm depth (horizontal δθ
dashed lines in Fig. 5.10-c).  

Figures 5.10-d and e show the parameters of the 
Gaussian fits: , ,  and . The depths of  µ

𝑍,δρ
µ

𝑍,δθ
σ

𝑍,δρ
σ

𝑍,δθ
maximum uptake zone  differ of maximum 5 cm µ

𝑍
between  and . Two groups of maximum uptake δρ δθ
depths can be seen in Figure 5.10-d: shallower uptake 
for C and deeper uptake for R, WC, and R+WC. These 
maxima all occur below 0.5 m depth, where the root 
density (green curve in Fig. 5.10-c) is the lowest. This 
is expected as, in WD condition, root water uptake not 
only depends on root density but also on soil water 
availability, which is larger below the dry root zone. 
We can conclude from this trial that Ryegrass, White 
clover (WC) and their combination (WC+R) have 
deeper depletion zones than cocksfoot. In the synthetic 
example, the ranking was slightly different: the 
maximum uptake depth was similar for C, R+WC, and 
WC, while R had a shallower . In the synthetic study µ

𝑍
though, the only difference between simulated species 
was their root distribution. In reality, there are a lot of 
other plant characteristics, which might affect their 
water uptake distribution, like plant root conductance, 
distribution of their hydraulic properties between root 
types, or their stomatal regulation.  

In terms of uptake extent , it is observed that R has a σ
𝑍

much higher extent than WC, WC+R, and C both in  δρ
and . On the opposite of the synthetic experiment, δθ
we see that in general  is larger than  except σ

𝑍,δθ
σ

𝑍,δρ

for R. We conclude that Ryegrass has a much smoother 
and uniform uptake depth range than the other species. 
This is in agreement with the early field observations 
of Volaire et al. (1998), who found C to be less efficient 
in terms of water extraction as compared to R 
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Figure 5.10:  The change of log resistivity between t1 and 
t3 of field inverted data ( ) for control and water deficit δρ
treatments. a)  in the control treatment, b)  in water  δρ δρ
deficit treatment. The black dotted line represents the 
positions of different plants. c) The 1-D median of  and -δρ

 for different plants in water deficit condition (dotted δθ
lines) and the Gaussian fit (solid line) and normalized root 
length densities (green line). The black dotted line 
represents the depth (Z=0.25) above which data is discarded 
for Gaussian fit. d) maximum depletion depth of 1-D median 
of  and -  as a function of plant species. The red solid δρ δθ
lines represent  derived from Gaussian fit to ERT µ

𝑍,δρ
derived , the blue solid lines represent  derived from δρ µ

𝑍,δθ
Gaussian fit to ERT derived - . e) depletion extent of 1-D δθ
median of  and -  as a function of plant species. The red δρ δθ
solid lines represent derived from Gaussian fit to ERT σ

𝑍,δρ
 

derived , the blue solid lines represent  derived from δρ σ
𝑍,δθ

Gaussian fit to ERT derived - . δθ

 

4.4 Discussion 
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We conducted a high-resolution ERT study on an 
intercropped field trial with 3 different herbaceous 
species and one mixture subject to two different 
treatments (control and water deficit). The main aim of 
the study was to map the plant uptake response to 
drought and investigate the sensitivity of ERT in 
capturing differences in water depletion patterns 
between species.  

The synthetic analysis demonstrated that, despite 
higher smoothness due to inversion, the forward and 
inverse dry zones were relatively well retrieved in 
terms of log( ). However, differences between species ρ
were hardly visible. One-dimensional profiles of 
temporal changes in median  or  made the difference ρ θ
in depletion zones between species clearer. The 
ERT-retrieved  1-D profiles were shown to match δθ
relatively well the actual depletion profiles. We fitted a 
Gaussian function to the 1-D profiles under WD 
conditions to retrieve four parameters: , ,  µ

𝑍,δρ
µ

𝑍,δθ
σ

𝑍,δρ
and . While the maximum depletion depths ( ) σ

𝑍,δθ
µ

𝑍,δθ
were generally well retrieved in terms of   or , the δθ  δρ
extent of the depletion zone ( ) was much better σ

𝑍
recovered using  than , demonstrating the δθ δρ
importance of using petrophysical relations. These 
mean and standard deviations parameters in  were δθ
proved to adequately represent respectively the 
maximum depletion depth and the extent of the 
depletion zone. They could be used as root 
phenotyping parameters in quantifying the water 
uptake ability of a plant in drought conditions. 
However, extending this approach to diverse crops, 
soils, and environments are needed to establish the 
methodology presented here.   

Large changes of resistivity observed in the upper soil 
horizon (between 0 and 25 cm depth) of all plant plots 
in the stress condition of the real field is not observed 
in the synthetic experiments. A possible reason could 
be surface evaporation which was ignored in the 
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model. Hence, future modeling studies should include 
surface evaporation as an additional topsoil boundary 
condition.  

Although studies show that root segments could affect 
petrophysical relation (Rao et al. 2019), we did not 
account for the impact of roots in the petrophysical 
relation due to following reason: a) First, roots were 
static (no growth) in the species (perennial) under the 
study time frame, b) Second, we examine changes of 
water content which eliminates the impact of roots in 
the petrophysical relation as there was no change in the 
root system and only change in the soil electrical 
resistivity that occurred comes from root water uptake. 
During uptake process or evaporation at the surface, a 
decrease in water content would increase the salinity of 
the pore water and its electrical conductivity causing 
uncertainty in petrophysical relation. Future study 
should focus on the variability of the petrophysical 
relation due to changing pore water salinity. 

When we use Gaussian fit indices for our real field 
data, we conclude that white clover (WC) (alone or in 
combination with Ryegrass) takes up water in deeper 
regions than the two other plants (Ryegrass and 
Cocksfoot). We also observe that Ryegrass has a more 
uniform water depletion (and hence uptake) profile. 
This methodology should be tested on more plant 
species and at different scales.  

The synthetic studies also showed that differences 
between plant uptake dynamics could better be 
characterized in WD conditions. Hence, plant 
phenotyping with ERT should ideally be realized under 
WD conditions. Yet, this study was performed for a 
relatively short (but realistic) WD period of three 
weeks. We expect that longer WD periods will enhance 
even more differences between species. Despite depth 
electrodes we observe that the coverage is still low 
below 1m depth. More depth electrodes are potentially 
needed to see deep root water uptake. In the near 
future, we will use these Gaussian fit indices to assess 
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their application on the whole field trial that includes 
additional species and their replicates.  

4.5 Appendices 
 

Appendix A: Soil Layer Description 
The description of soil layers for water deficit 
condition from the observation is as follows: 

a) Ap1 (0-10 cm): the moist color of the horizon is brown. 
The horizon has a moderate fine to a medium granular 
structure. This horizon contains many very fine to 
coarse roots.  

b) Ap2 (10-25cm): the moist color of the horizon is 
brown. The horizon has a weak fine to a medium platy 
structure. This horizon is less porous than the Ap1 
horizon. However, many fine to medium roots was still 
present. 

c) Ap3 (25-35cm): the plough sole. The horizon has a 
strong thick platy structure. The roots were growing 
horizontally along the boundary between Ap2 and Ap3 
horizon. 

d) Bt (35-95 cm): the horizon has a brownish color. The 
horizon has a moderate to strong coarse/thick blocky 
structure. The horizon contains few roots. Earthworm’s 
channels were present in the horizon 

e) C (95cm +): Bruxellien sand. The horizon has a 
yellowish-brown color. The horizon has a strong 
coarse/thick blocky structure. The horizon contains 
very few fine roots. Little rocks were also present on 
this horizon. 
The description of soil layers for control condition 
from the observation is as follows: 

a) Ap1(0-10 cm): the moist color of the horizon is brown. 
The horizon has a moderate fine to a medium granular 
structure. This horizon contains many very fine to 
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coarse roots. Some remaining vegetation still also 
present. This horizon is highly porous.  

b) Ap2(10-25cm): the moist color of the horizon is brown. 
The horizon has a weak fine to a medium granular 
structure. This horizon is less porous than the Ap1 
horizon. However, many very fine to coarse roots still 
present.  

c) Ap3(25-38cm): the plough sole. The horizon has a 
strong thick platy structure. Many very fine to coarse 
roots are present. The roots are growing horizontally 
belong to the boundary between Ap2 and Ap3 horizon.  

d) Bt1(38-78 cm): the horizon has a brownish color. The 
horizon has a moderate to strong coarse/thick blocky 
structure. The horizon contains few very fine to fine 
roots. Earthworms channels are also present on the 
horizon.  

e) Bt2 (78cm +): the loess layer. The horizon has a 
greyish color. The horizon has a strong very 
coarse/thick blocky structure.  
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Appendix B: ERT data processing 
The detailed workflow for processing raw ERT data 
and assessment of measurement error prior to the 
inversion procedure is shown in Figure 5.11-a. In this 
section, we describe in detail each step, namely: 
preliminary filtering, normal-reciprocal analysis and 
error model. Figure 5.11-b shows the number of 
quadrupoles remaining at each stage of the data 
processing described below.  

Preliminary Filtering: identification and 
removal of outliers 

A filter is applied to remove ERT data having the 
following criteria:  

a) Geometric factor > 50000  
b) Apparent resistivity outside [5 – 2000] [Ω.m]. Such 

bounds include the TDR values measured on the 
field and vary in [25 – 200] [Ω.m].  

c) Data having stacking error greater than 50% (Beff 
et al. 2013).  
 

Normal-Reciprocal Analysis: detailed filtering 
of the data 

We look at the resistance measured in normal ( ) and 𝑅
𝑛

reciprocal ( ) readings to characterize the error as 𝑅
𝑟

shown in Figure 5.12-a. The number of quadrupoles 
having reciprocals was 450 out of 3084 quadrupoles in 
the raw data. In the normal-reciprocal filtering, we 
have the following steps: 
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a) Compute error and fractional error ( ) as:  𝐹𝐸

                                                                                          𝐸 = |𝑅
𝑛

− 𝑅
𝑟
|

(B.1) 

                                                                                       𝐹𝐸 = 𝐸
𝑅

𝑚𝑒𝑎𝑛

(B.2) 

b) Remove quadrupoles having  > 0.5 𝐹𝐸
c) For remaining normal-reciprocal pairs, we replace 

 and  by their arithmetic mean ( ): 𝑅
𝑛

𝑅
𝑟

𝑅
𝑚𝑒𝑎𝑛

 
                                                                    𝑅

𝑚𝑒𝑎𝑛
=

𝑅
𝑛
+𝑅

𝑟

2

(B.3) 

Quantification of the data-error  

The data-error in ERT can be described by a linear 
model (e.g., LaBrecque et al. 1996; Slater et al. 2000) 
that depends on the magnitude of measured resistances 
and expressed in terms of two parameters, which can 
be written as:  

                                                                               𝐸
𝑚𝑜𝑑𝑒𝑙

= 𝑎 + 𝑏𝑅

(B.4) 

where  is the magnitude of the resistance,  is the 𝑅 𝑎
absolute error and  is the relative error. As described 𝑏
in LaBrecque et al. (1996), the absolute error is mainly 
dominating for low resistance values (e.g. above 1 Ω); 
whereas the relative error is mainly describing the error 
for high resistance readings. 

After the removal of clear outliers, we assume that the 
measurements are only affected by random error, which 
can be quantified by the model expressed in Equation 
5.4.  
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In Figure 5.12-b, we compare the histograms of  𝑅
𝑚𝑒𝑎𝑛

with that of resistances of all data (quadrupoles that did 
not have reciprocals included) concatenated for all 
three-time stamps. The available normal-reciprocal 
data represents only about one-fifth of the total data as 
seen from their histograms. We see that the cumulative 
reciprocals are representing the total data for a large 
range of resistances.  

Among the different methods allowing the 
quantification of the error parameters, we used the 
log-binning method (described in detail in Koestel et 
al. 2008). We find the absolute error ( ) and 𝑎 = 0. 04
the relative error ( ) as shown in Figure 𝑏 = 0. 12
5.12-c. These values were used for ERT inversion of 
all-time series. 

 

Figure 5.11:  a) Methodology workflow chart for ERT data 
processing of field data and b) no. of quadrupoles per 
dataset remaining at various stages of the filtering process. 
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Figure 5.12:  a) Normal and reciprocal resistances of 
cumulative data from t1 to t3. The dashed line indicates the 
range considered in the error model (  while data 𝐹𝐸 < 0. 5
points outside the dashed lines are discarded, b) Histograms 
of cumulative resistances of all data from t1 to t3 in blue, 
and normal-reciprocal resistances averaged in red, c) Error 
vs resistance plot (blue circles) with log binned values: 
standard deviation of error vs mean resistance (red crosses) 
and a fit to log binned values (black line). The fit is E = 
0.04+0.12 R. 

Appendix C: Optimizing λ and Zw 
Figure 5.13 shows the L-curve computed for the 
control condition at t1 for different Zw (other times are 
not shown although we computed optimal lambda for 
each time separately). The optimal λ or the corner of 
L-curve varied between 150 and 200 for most of our 
synthetic and experimental data. Hence, we chose the 
value of 175 to be optimal for our further studies. We 
provide the inversion quality and images in section E.  

To optimize , we looked at two indices: a) Mean 𝑍
𝑤

Square Error ( ) between original synthetic model 𝑚𝑠𝑒
and inverted model interpolated on the same mesh and 
b) Structural Similarity Index ( ) (Wang et al. 𝑠𝑠𝑖𝑚
2004) which measured the structural similarity (0 to 1 
scale) between original synthetic model and the 
inverted model. Optimized  is assumed to be the one 𝑍

𝑤

for which  is lowest and  is highest between 𝑚𝑠𝑒 𝑠𝑠𝑖𝑚
inverted and original model. For  optimization, we 𝑍

𝑤

compare  and  indices for the following 𝑚𝑠𝑒 𝑠𝑠𝑖𝑚
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quantities between the original model and inverted 
model: 

a) Electrical resistivity distribution at a given time 
denoted by ρ(t1), ρ(t2), and ρ(t3). 

b) Water content distribution at a given time denoted 
by θ(t1), θ (t2), and θ (t3). 

c) Log difference of electrical resistivity at t3 and t1:   
. δρ = 𝑙𝑜𝑔(ρ(𝑡3)) − 𝑙𝑜𝑔 (ρ(𝑡1))

d) A difference of water content between t3 and t1:  
. δθ =  θ (𝑡3) −  θ (𝑡1)

The optimal Zw for which  was maximum and 𝑠𝑠𝑖𝑚
 was minimum varied for different quantities, time 𝑚𝑠𝑒

and treatments ( , ,  and ) and ranged from 0.1 to ρ θ δθ δρ
0.8. To have a common Zw for all the data, we took the 
mean value which was around = 0.5. Also, this 𝑍𝑤
choice of Zw = 0.5 produced minimal artifacts when 
inspected visually (See section D). 

Up to 1m in-depth, we have good uniform coverage 
below which the sensitivity of electrodes becomes 
non-uniform mainly due to greater electrode separation 
and lesser electrodes (See Fig. 5.13). Hence, we can 
expect that inversion results below 1m depth may 
contain artifacts and should not be interpreted. 
However, at depths greater than 1m, TDR 
measurements showed fewer variations in the 
resistivity and hence lower coverage of ERT electrodes 
was sufficient.  

 

Figure 5.13:  a) L-curves computed for electrical resistivity 
at t3 of Figure 5.7-c for different Zw. The optimal lambda is 
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at the corner of the L-curve indicated by a diagonal line, b) 
Logarithm of electrode coverage of the ERT injection 
scheme. 

 

 

 

 

 

 

 

 

 

 

Appendix D: Impact of Zw on 
Inversion 
The optimal Zw as predicted by mse and ssim indices 
differed for each data, quantity, and treatments. We 
compared the inversion with a forward synthetic map 
of (t3), (t3),  and  for different values of Zw. ρ θ δθ δρ
First, we can see that our injection scheme recovers the 
most important features in the soil-root zone. Note that 
the injection scheme is able to recover the uptake 
patterns of different plants up to 1m in depth. Second, 
we find that Zw = 0.5 performs better than other 
choices in terms of reduced artifacts.  

The  was within 2% and  within 5% for all 𝑟𝑟𝑚𝑠 χ2

inversions results involving both synthetic and real data 
showing the good quality of ERT inversion fits at Zw = 
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0.5. The  index between synthetic forward and 𝑠𝑠𝑖𝑚
ERT inverted varied between 0.55 to 0.62 for synthetic 
studies while  index ranged from 34 to 74 . 𝑚𝑠𝑒  [Ω2𝑚2]

 

Figure 5.14:  a) Comparison of Synthetic forward resistivity 
distribution at (t3) with ERT inversion at different Zw for ρ
control treatment and stress treatment, b) Comparison of 
forward log ratio of resistivity at time 3 and time1 ( ) with δρ
ERT inversion at different Zw for control treatment and 
stress treatment, c) Comparison of transformed forward 
water content distribution at (t3) with ERT inversion at θ
different Zw for control treatment and stress treatment, and 
d) Comparison of a forward difference of water content at 
time 3 and time1 ( ) with ERT inversion at different Zw δθ
for control treatment and stress treatment. 

Appendix E: Plant and Soil boundary 
condition 
Table 5.2: Soil hydraulic properties per horizon. : θ𝑟
Residual water content, : Saturated water content,  ,  , θ𝑠 𝑎 𝑛

 and : shape parameters in Van Genuchten-Mualem 𝑚 λ
equations, : saturated soil hydraulic conductivity. 𝐾𝑠

H
orizon 

 θ𝑟
[c

m3cm-3] 

 θ𝑠
[c

m3cm-3] 

 𝑎
[

1/cm] 
 𝑛 𝑚

= 1-1/  𝑛
 𝐾𝑠

[cm/day]  λ

A
p1 0 0.

4260 
0

.0264 .174 
0

.1482 
44.

4 .1 
A

p2 
0.

039 
0.

404 
0

.00416 .521 
0

.3425 
0.7

32 .340 
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A
p3 

0.
039 

0.
404 

0
.00416 .521 

0
.3425 

0.7
32 .340 

Bt
1 0 0.

4 
0

.00421 .214 
0

.1762 1.5 .731 
Bt

2 0 0.
4 

0
.00421 .214 

0
.1762 1.5 .731 

C 0.
1 

0.
357 

0
.0148 .056 

0
.5136 5 .155 

 

Table 5.3:  Plant parameters used in R-SWMS simulation          
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Equivalent conductance of the whole 
root system 1 [cm³/hPa/day] 

Compensatory RWU conductance of the 
root system 1 [cm³/hPa/day] 

Limiting collar water potential 
(isohydric plant)             -15000 hPa 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 FIELD PHENOTYPING 
OF GRASS WATER 
UPTAKE UNDER 
WATER DEFICIT BY 
ERT 
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ABSTRACT 
Grasslands are potentially sensitive to shift in 
precipitations induced by climate changes. 
Combinations of grass and forbs species with different 
ability to extract deep soil water might increase the 
resilience of grasslands against water deficit conditions 
and help keep the same forage quality and quantity in 
adverse conditions. In this study, a field trial with 
imposed water deficit was set up to compare grassland 
productivity of different compositions. It consisted of 4 
replicate plots (7.2 m x 1.5 m) of different grasses and 
forbs under 2 treatments: water deficit (no rainfall) and 
control (normal weather).   

Surface and depth electrodes were installed on a 
vertical transect across replicate plots to monitor soil 
electrical resistivity using Electrical Resistivity 
Tomography (ERT) for both treatments. We 
hypothesize that different plant water uptake strategies 
would result in different distributions of soil water 
depletion and thus, of electrical resistivity evolution.   

 By computing the 1-D averaged profiles of electrical 
resistivity changes, different depletion patterns could 
be discriminated for different plant species. The 
differences in the uptake pattern were then linked to 
plant physiology and root characteristics. 

 

5.1 Introduction 
 

More than 25% of the world land area and 70% of the 
world agricultural area are covered with grasslands and 
support crop-livestock farming systems that contribute 
to the livelihoods of more than 800 million people 
worldwide (Rojas-Briales 2015). Beyond forage 
production, grasslands provide numerous ecosystem 
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services including carbon sequestration, water erosion 
control, flood mitigation, protection and enrichment of 
the soil and maintenance of biodiversity (Zhao et al. 
2020). Globally, 5.5Gt of carbon are estimated to be 
stored in the top 30 cm of grassland soils, which 
represent 40% of agricultural area of the world (Gibson 
2009; Kipling et al. 2016; Scurlock and Hall 1998; 
Suttie et al. 2005). 

However, global change deeply affects grasslands and 
threatens their ecosystem services (Hopkins and Del 
Prado 2007). Despite the fertilization effects of 
increased atmospheric CO2,  change of precipitation 
patterns, increased drought frequency and heat waves 
will affect grassland vegetation (Ergon et al. 2018; 
Haddad et al. 2002; Tilman and El Haddi 1992) and 
might reduce biomass production in grasslands if soil 
moisture becomes limiting (Gilgen and Buchmann 
2009). Therefore, adaptation strategies need to be 
found to increase grassland resilience and productivity 
and maintain the ecosystem services they currently 
deliver. Amongst them, it has been proposed to 
diversify and combine different forage crop species and 
investigate within-species diversity in response to 
drought (Hanna et al. 2018). It is therefore crucial to 
develop techniques to assess the ability of specific 
plants or combinations of plants to cope with drought 
and take up water in adverse conditions. 

Water and nutrient uptake efficiency in grasses and 
clovers have been linked to root traits (Jackman and 
Mouat 1972). For instance, early pot studies by Evans 
(1977) found that grasses such as Lolium perenne L. 
and Dactylis glomerata L. were more efficient in terms 
of nutrient and water uptake than clovers such as 
Trifolium pratense L. and Trifolium repens L. This 
efficiency was linked to the superior root traits of 
grasses such as higher no. of root hairs or greater root 
length per unit volume as compared to clovers (Evans 
1977). In an another early study, manual removal of 
root system in pot experiment reduced water uptake but 
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not the nitrogen uptake (Andrews and Newman 1970). 
A more recent study by (Zhang et al. 2009) on winter 
wheat suggests that under water deficit condition, root 
water uptake is not affected by root system size. This 
contrasting conclusion suggests our incomplete 
understanding of soil-plant-environment interactions.  

Some studies indicate that drought stress could affect 
root growth rate, root architecture and root biomass 
production (Hoogenboom et al. 1987; Rodrigues et al. 
1995). However, a study on grasslands in Switzerland 
showed that drought did not have an effect on root 
biomass production and only affected above ground 
bio-mass (Gilgen and Buchmann 2009). Another study 
by Dickin and Wright (2008) showed that stressors 
such as waterlogging and droughts could decrease the 
total root length but not the rooting depth in winter 
wheat. Field studies on Ryegrass and Cocksfoot show 
that tolerance to droughts could be linked to deeper 
roots or deeper uptake depths and their quick ability to 
take up nitrogen upon availability of water (Volaire et 
al. 1998). In their study, Cocksfoot (Lutetia breed) was 
unable to extract water at deeper soil horizons due to 
fewer roots at depths below 70 cm as compared to 
Ryegrass. However, in both species no uptake was 
found below 1m depth when subjected to a drought of 
80 days.  

According to (Blum 2011) studying phenotyping traits 
in plants such as water uptake ability is the key solution 
to drought resistance as compared to finding drought 
tolerant genes through genomics method. Various 
studies target phenotyping the aerial part of the plant. 
They include field scale optical imaging techniques 
such as the use of thermal camera, laser scanning and 
hyperspectral cameras (Fiorani and Schurr 2013; 
Golzarian et al. 2011; Yang et al. 2013). The estimated 
key parameter, such as shoot biomass, plant growth, 
and photosynthesis, then helps in identifying efficient 
phenotypes within a plant species. For example, 
structural traits such as leaf angle distribution are 

204 
 



linked to light interception (Ford et al. 2008) and 
canopy temperatures are linked to leaf transpiration 
(Wasson et al. 2012).   

Since roots are the plant organs, that first detect 
agricultural stresses such as water deficit or high 
salinity and sends appropriate chemical stress signals to 
the shoot, in turn, reducing the crop yields (Jenks et al. 
2007), it is very important to understand them. 
However, compared to the aerial part, there are not 
many studies on direct root phenotyping at field scale. 
Some studies use certain above ground traits such as 
leaf transpiration, leaf area index, shoot biomass and 
canopy temperatures as an indirect proxy for measuring 
root system performance but are not always accurate 
and useful (Wasson et al. 2012). Direct root 
phenotyping is at the frontier of plant phenotyping 
research but is still challenging due to lack of 
accessibility (Fiorani and Schurr 2013).  

Traditional root phenotyping methods involve manual 
digging of soil to expose roots or specialized rhizotrons 
equipped with cameras. There is also the use of tractors 
attached with soil coring equipment that can take large 
no. of soil core samples in less time as compared to 
manual digging (Wasson et al. 2012). However, these 
techniques only samples small portion of root systems 
leaving the rest unexplored (Cendrero-Mateo et al. 
2017). In addition, pot experiments aimed at selecting 
superior genotypes by excavating and analyzing entire 
root traits are unrealistic due to time consuming nature 
(Norris and Thomas 1982).  

For a long time, measuring water depletion in soils is 
used as a good proxy for root phenotyping (Horn 1971; 
Kiniry et al. 1983). Water depletion is easier to measure 
as compared to root counting through the use of 
sensors and has been widely used in different plant 
species (Dardanelli et al. 1997; Dick et al. 2018; 
Gordon et al. 1989; Hattendorf et al. 1988; Merrill et 
al. 2004; Moroke et al. 2011; Pepe and Welsh 1979; 
Robinson et al. 2006; Stone et al. 2002; Volaire et al. 
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1998; Wang et al. 2009). For example, Kirkham et al. 
(1998) used neutron probe method to compare water 
depletion in Maize and Soybean and could relate it to 
root density.  Stone et al. (2002) used neutron probe to 
quantify water depletion depths in sunflower and 
sorghum and found sunflower to be more efficient in 
uptake than sorghum due to its deeper root. Similarly, 
Wang et al. (2009) used soil moisture sensor to 
differentiate water depletion depths in alfalfa, caragana 
brush and pine species and was able to relate these 
differences to root density. On the other hand, Pepe and 
Welsh (1979) monitored water depletion in winter 
wheat cultivars using gravimetric sensors at a 
resolution of 30cm and could not relate water depletion 
to root activity. The commonly used methods such as 
neutron probe or gravimetry lacks depth resolution 
(Schmugge et al. 1980) and hence better methods are 
needed to quantify depletion depths of plants.   

Monitoring root water depletion signatures via the 
electrical resistivity tomography (ERT) method has 
recently be found to be useful in retrieving root 
phenotyping information such as depth and extent of 
water depletion (Rao et al. 2020). Many ERT studies 
on cropped soil uses surface electrodes, most 
commonly the Wenner array. Jayawickreme et al. 
(2008) and Dick et al. (2018) investigated contrasting 
root systems such as that of forests and grasslands by 
ERT. Jayawickreme et al. (2008) used a Wenner 
configuration (surface electrodes) with an electrode 
spacing of more than one meter while Dick et al. 
(2018) used an electrode spacing of 1m for forest and 
0.5 m for heather. Srayeddin and Doussan (2009) used 
an ERT Wenner array configuration with relatively less 
electrode spacing of 0.3 m to study root water uptake 
depths in Maize and Sorghum field. They observed 
water depletion in both Maize and Sorghum for depths 
up to 160 cm and found that Sorghum extracted more 
water than Maize. However, in water stress treatment, 
the water uptake could not be quantified beyond 50 - 
60 cm depth due to poor sensitivity of surface electrode 
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configuration. Therefore, surface configuration may 
not be suitable for phenotyping roots that need higher 
resolution in the sub-meter scale where differences 
between different grass root systems occur. Even for 
larger trees, ERT experiments show that the root 
activity takes place at the decimeter scale (0.1 m) 
(Vanella et al. 2018). In Table 6.1, we summarize some 
of the studies that used water depletion as a proxy for 
root activity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.1: Studies using water depletion depths in cropped 
soils 
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Author S
cale 

Met
hod 

Specie
s 

Maxi
mum 

depletion 
depth (m) 

Brown 
(1971) 

Fi
eld 

Neut
ron probe 

Winter 
wheat 0.91 



 

Therefore, the main objective of this study to 
investigate the ability of ERT to differentiate water 
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Pepe and 
Welsh (1979) 

Fi
eld 

Grav
imetry 

Red 
winter wheat - 

Hattendorf 
et al. (1988) 

Fi
eld 

Neut
ron probe 

Sunflo
wer 

0.99-1.
6 

Kirkham 
(1998) 

R
hizotron 

Neut
ron probe 

Maize 
Soybea

n 

0.45-0.
9 
0.3-0.6 

Stone et al. 
(2002) 

Fi
eld 

Neut
ron probe 

Sunflo
wer 

Sorghu
m 

3.1 
2.5 

Merill et al. 
(2004) 

Fi
eld 

Neut
ron probe 

Sunflo
wer 

Canola 
Spring 

wheat 
Dry 

pea 

> 0.6 
> 0.6 
< 0.6 
< 0.6 

Moroke 
(2005) 

Fi
eld 

Neut
ron probe 

Cowpe
a 
Sorghu

m 
Sunflo

wer 

0.5-1.7 
1-1.8 
1-1.8 

Robinson et 
al. (2006) 

Fi
eld 

Grav
imetry 

Eucaly
ptus 8-10 

Wang et al. 
(2009) 

Fi
eld 

Grav
imetry 

Alfalfa 
Caraga

na brush 
Pine 

forest 

15.5 
22.4 
21.5 

Srayeddin 
and Doussan (2009) 

Fi
eld ERT 

Maize 
Sorghu

m 

1.6 
1.6 

Rao et al. 
(2020) 

Fi
eld ERT 

Rye 
grass 

White 
clover 

Cocksf
oot 

0.5-1 
0.5-1 
0.5-1 



depletion patterns in plants when subjected to water 
deficit in situ. We used 2-D ERT in an agronomic field 
trial comparing combination of forage crop genotypes 
and extended the previous high-resolution ERT study 
of Rao et al. (2020) to derive response to drought of 5 
different crop forage species and their combinations.  

5.2 Materials and Methods 
 

5.2.1 Field Trial Description 
 

The experimental field is located in Corroy-le-Grand 
(Belgium), at the De Marbais University farm, in the 
agricultural Loess region.  

A random-block field trial was established for 
comparing combinations of grass and forb species 
under water deficit conditions (through a shelter 
preventing rainfall for six weeks) as shown in Fig. 
6.1-a.  

The experimental field is organized in four blocks of 
7.2 m by 7 m (B1 to B4). Each block contains eight 
plots sown homogeneously with a given (combination) 
of species as shown in Fig. 6.1-b. For ERT 
measurements, each block is split organized into two 
panels of four plots (dimension 1.2 m x 7 m) separated 
by a layer of 30 cm (Figure 6.1-c). 

The trial consisted of five monocultures: Lolium 
perenne L., Medicago sativa L., ,Dactylis glomerata L., 
Trifolium pratense L., Trifolium repens L. and three 
binary mixtures: (Lolium perenne L./Trifolium repens 
L., Dactylis glomerata L./Medicago sativa L., Lolium 
perenne L./Trifolium pratense L.) subjected to water 
deficit treatment. Each crop monoculture or 
combination of crops had four replicates, totalizing 32 
plots.  The abbreviation used for each species along 
with English names and sowing density are shown in 
Table 6.2.  
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Figure 6.1: a) Picture of an experimental site with water 
deficit treatment. b) Sketch of the vertical cross-section for 
each plot of the experimental field in Corroy-le-Grand. TDR 
probes and thermometers are located under ryegrass plots of 
block2 (red circles). Different soil-horizons are indicated by 
the corresponding brown color scale. ST represents the 
sampling trenches. Letters below each plot indicate the 
(combination of) species of the plot: three binary mixtures 
(R+WC: ryegrass+white clover; R+RC: ryegrass+red 
clover; C+A: cocksfoot+alfalfa) and five monocultures (A: 
alfalfa; C: cocksfoot; R: ryegrass; RC: red clover; WC: 
white clover) is present; and c) A schematic view of a panel 
(here block 2, panel2) showing the ERT electrodes at the 
center plane (y = 0) used for two-dimensional ERT imaging. 
The black dots represent the surface point electrodes while 
the black squares are the borehole ring electrodes. Location 
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of TDR probes (red circles) installed at different depth in 
ryegrass strip. Blue rectangles around TDR probes represent 

the region for averaging ERT data for comparison against 
TDR values. 

Table 6.2: Details of plant species in the study 

 

Soil is classified as a Haplic Luvisol (Soil Atlas of 
Europe, 2005) according to the FAO classification 
system and considered a well-drained loam (Aba(1)), 
according to the Belgian soil classification. Three to 
four soil horizons were identified with trenches dug out 
around the field trial, depending on the location in the 
field trial (Fig. 6.1). The soil layers were characterized 
as follow:  

a) Ap: brown horizon with moderate fine to medium 
granular structure. This horizon contains many very 
fine to coarse roots.  
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Species English 
name 

A
bbrev. 

Sowi
ng density 

(kg/ha) 
Lolium 

perenne L. Ryegrass R            25 

Medicago 
sativa L. Alfalfa A 30 

Dactylis 
glomerata L. Cocksfoot C 30 

Trifolium 
pratense L. 

Red 
clover 

R
C 25 

Trifolium 
repens L. 

White 
clover 

W
C 12 

Lolium 
perenne L. + Trifolium 

repens L. 

Ryegrass 
+ White clover 

R 
+ WC 20 + 2 

Dactylis 
glomerata L. + 

Medicago sativa L. 

Cocksfoot 
+ Alfalfa 

C 
+ A 

15 + 
18 

Lolium 
perenne L. + Trifolium 

pratense L. 

Ryegrass 
+ Red clover 

R 
+ RC 20 + 8 



b) Bt: brownish horizon with a moderate to strong 
coarse/thick blocky structure. The horizon contains 
few roots. Earthworm’s channels were present in 
the horizon 

c) C: Brusselian sand. The horizon has yellowish 
brown color. The horizon has strong coarse/thick 
blocky structure. The horizon contains very few 
fine roots. Little rocks were also present is this 
horizon. 
 
 

5.2.2 ERT Acquisition 
 

ERT data were acquired independently within each 
panel through 2-D cross sections. ERT monitoring data 
set consisted of four-time stamps (denoted by t1 to t4), 
with data collected along the experimental panel every 
week along four consecutive weeks. The exact dates of 
measurements were t1: 03/08/2017, t2: 09/08/2017, 
t3:16/08/2017 and t4:24/08/2017. A rainout shelter was 
placed to prevent precipitation between 1/07/2017 to 
29/08/2017. In addition, during this period no irrigation 
was added as shown in Figure 6.2.  

Each panel was equipped with 123 electrodes, 
including 48 surface electrodes (with a separation of 
0.15 m, circles in Fig. 6.1-c) and 75 electrodes 
distributed along 13 boreholes (separated of 50 cm), 
crossing the middle of each panel. The electrode 
layout, injection scheme, data processing and ERT 
inversion in this study are described in Rao et al. 
(2020). For the first three weeks (t1 to t3), we used the 
same measurement protocol and for the fourth week 
(t4), we changed the measurement scheme to include 
more reciprocals for error assessment and optimize the 
injection scheme for faster data acquisition.  From t1 to 
t3, panel 1 and 2 contained 3054 and 2734 quadrupoles 
and at time 4, panel 1 and 2 contained 2051 and 1877 
quadrupoles.   
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The raw data was filtered for outliers as described in 
Rao et al. (2020). We used python based pyGIMLi 
software (Rücker et al. 2017) for the inversion of ERT 
filtered data. We assume that measurement error in the 
filtered follows a linear model that depends on the 
magnitude of measured resistances and characterized 
by two parameter: absolute term and relative term 
(Günther et al. 2006; Koestel et al. 2008; Udphuay et 
al. 2011). The absolute and relative term was found 
using the approach of Koestel et al. (2008). Finally, to 
assess the ERT inverted results, we made use of the 
relative root mean square error and chi-square value 
(Beff et al. 2013). 

 

Figure 6.2: Boundary treatments in the field during the 
ERT/TDR data acquisition time. Rainfall, irrigation, 
evapotranspiration and cumulative water. Cumulative water 
is the cumulative sum of precipitation and irrigation 
subtracted with a cumulative sum of evapotranspiration. 

5.2.3 Time Domain Reflectometry 
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Four Time domain reflectometry (TDR) probes were 
inserted horizontally at different soil depths below one 
single plot (sown with Ryegrass), which measured soil 
water content every week from t1 and electrical 
resistivity from t3 (red dots in Fig. 6.1-c). The TDR 
probes were installed at depths: Z = 0.15 m, 0.3 m, 0.75 
m and 1.05 m and Y = -0.35 m. The TDR data was 
collected manually during the same duration as that of 
ERT and calibrated with a TDR probe cell constant of 
Kp = 1.57 [m-1] along with temperature correction as 
described in Beff et al. (2013). Topp equation was used 
to convert permittivity to water content (Topp et al. 
1984). Comparison with soil coring moisture content 
provided a r² of 0.99 with a RMSE in water content of 
0.04 cm3/cm3. 

The pedophysical relation between EC and water 
content used for ERT was realized with a new set of 
TDR probes (Campbell, Logan, USA) installed in the 
year 2018 in the same field as described in Rao et al. 
(2020), which simultaneously monitored water content 
(θ) and electrical conductivity (EC). The TDR data was 
grouped into three soil horizons: Ap, Bt and C for 
pedophysical characterization (See Appendix A).  

To compare ERT and TDR water content, we averaged 
the ERT derived water content on a rectangle 
surrounding the TDR probe (+/- 5 cm) with a height of 
10 cm and width of 1.5 m (blue rectangles in Fig. 6.2). 
Comparing ERT results with TDR will not only allow 
us to conclude on the accuracy of ERT inversion but 
also on the optimal pedophysical characterization of 
soils from 2018 TDRs (Huisman et al. 2008; Koestel et 
al. 2008).  

5.2.4 Root characteristics measurements 
 

Nine trenches (2 m x 2 m x 1.8 m) were dug on the 
edge of the plots for soil horizon characterization and 
root counting on October 31st, 2018 (Fig. 6.1-b). A grid 
(1.5 m x 1.5 m) composed of 900 cells (5 cm x 5 cm) 
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was fixed vertically against the soil wall. Then, the 
number of roots present in each cell was counted for 
each plant plots. The resulting root number density 
showed species dependent variations as shown in 
Figure 6.3. We will compare the root density profiles of 
Figure 6.3 with the water depletion patterns derived 
from ERT in the following sections.  

 

Figure 6.3: Root number density as a function of plant 
species. The units are normalized.   

5.2.5 Analyses of plant depletion patterns 
 

We follow the Gaussian fit method from Rao et al. 
(2020) to characterize plant-specific depletion patterns. 
First, we compute the 2-D time difference of water 
content defined as: 

        δθ =  θ 𝑡1( ) − θ (𝑡4) 

The 1-D medians at each depth from 2-D distributions 
of  was computed for each plot and a Gaussian curve δθ
was fitted to the 1-D medians of  profiles. From the δθ
fitted Gaussian function, the two parameters of a 
Gaussian function were then optimized to fit these 1-D 
profiles:  and . The mean parameter   µ

𝑍,δθ
σ

𝑍,δθ
µ

𝑍,δθ
represents the depth at which depletion is the largest 
(maximum depletion depth) while  represents the σ

𝑍,δθ
extent of the depleted zone.  
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In addition, we also perform one-way ANOVA 
(Weckesser and Haberland 2019) and kruskal-wallis 
h-tests (Kruskal and Wallis 1952) on Gaussian fit 
parameters for different replicates grouped by plant 
species to analyze the statistical significance of the 
differences observed in species. Finally, as post-hoc 
test, we also performed Tukey honestly significant 
difference test pairwise between two species to 
determine which groups were significantly different in 
terms of Gaussian fits (Tukey 1949). These tests were 
performed using SciPy library (Virtanen et al. 2020).  

 

5.3 Results 
 

5.3.1 Comparison between soil water content 
measured by TDR and ERT 

 

Figure 6.4 compares the ERT averaged water content 
along with standard deviation with the TDR derived 
water content combined for different time and depths. 
We observe higher lateral variations of ERT water 
content (vertical bars in Fig. 6.4) at depths 75 cm and 
105 cm as compared to shallow depths of 15 cm and 30 
cm which is opposite to what Beff et al. (2013) 
observed. In general, we observe a very high 1:1 
correlation (r2 = 0.99) of TDR and ERT with a rmse 
0.03 [m3 m-3] showing reasonable accuracy of the used 
pedophysical relation and the accuracy of ERT 
inversion in quantifying soil water content variability.  
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Figure 6.4: Mean soil water content measured by ERT and 
TDR at different depths. The vertical bar represents the 
standard deviation of ERT data corresponding to the lateral 
variability of the ERT values at the depth of the TDR+/- 5 
cm. The TDR error bar corresponds to the rmse of the TDR 
calibration. The dotted line corresponds to 1:1 correlation 
line. Color represents different time: red:t1, green: t2, blue: 
t3 and cyan: t4. Different markers represent depths: circle: 
15cm, star: 30 cm, square: 75 cm and triangle: 105 cm. 

5.3.2 Water content evolution 
 

Figure 6.5 shows the 2-D water content distribution 
evolution of the 4 replicates for each (combination of) 
plant species. As plots were spread between different 
blocks with different layering, differences in the depth 
of the sand layer (blue region below 0.8 m) can be 
observed between replicates of the same species. In 
general, we see a consistent drying pattern progressing 
between t1 to t4 (increasing brown patches) except for 
some panels such as RC in B3, WC in B2 and R+RC in 
B3. In these plots (RC in B3, WC in B2 and R+RC in 
B3), inconsistent patterns appear such as t2 being drier 
than t4 which is not possible. One possible explanation 
could be the lower ERT sensitivity of some of these 
plots. Hence when we inspected the sensitivity map as 
a function of plant species (Appendix A2), we clearly 
see that these panels where we see earlier times drier 
than final time, the sensitivity was poorer. In general, 
the sensitivity below 1m depth drops below 1.5 but for 
some plot’s sensitivity is lower even above 1m. The 
plots for which sensitivity is below a threshold value of 
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1.5 (Fig. A2) at shallow depths (Z < 0.8 m) is marked 
with red diamond to the left in Figure 6.5.  

As the water deficit increases with time, we expect to 
see more changes between t4 and t1 than between t3 
and t1 or t2 and t1. Hence, in the next section we 
analyze  between time 1 and time 4 only.  δθ

 

Figure 6.5: ERT inverted water content at different times 
(columns) for different replicates or blocks within a species 
(rows) for: a) ryegrass (R), b) red clover (RC), c) alfalfa (A), 
d) cocksfoot (C), e) white clover (WC), f) ryegrass and 
white clover mixture (R+WC), g) cocksfoot and alfalfa 
mixture (C+A), h) ryegrass and red clover mixture (R+RC). 
Red diamonds show replicates for which coverage was low. 

5.3.3 Depletion depth and root and available water 
distributions 
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In Figure 6.6 the 2-D distribution of   is computed δθ
for all replicates and combinations of species. In the 
second column of Figure 6.6, we fitted Gaussian curves 
to positive change of  medians (representing water δθ
depletion) to quantify maximum depletion depth and 
depletion zone extent of each replicate. In general, 
despite high variability between 2-D  , we see δθ
consistency in the shape of  medians between δθ
replicates, which is a good indication that ERT was 
able to capture a representative signature of the 
depletion pattern. It means that local water content 
changes are probably not able to characterize 
species-specific signature and that (at least) a 2-D 
coverage is need to acquire a representative picture of 
the uptake patterns. 

In Figure 6.7-a, we compare the Gaussian fitting 
parameters, namely maximum depletion depth (black 
dots) and depletion zone extent (vertical bar) for each 
replicate within a species. We observe that there exists 
some difference among different species. In general 
depletion profiles between replicates is very similar 
except for red and blue sticks, where more variation is 
observed. The red sticks are the ones with low 
coverage while the blue are outliers based on 
interquartile ranges.  Figure 6.7-b and c shows the box 
plot (Williamson et al. 1989) characterizing minimum, 
maximum, median (50th percentile), first quartile (25th 
percentile) and third quartile (75th percentile) of 
depletion depth and extent of different replicates within 
a given species. Clearly the blue sticks in Fig. 6.7-a 
appear outside the quartile range (blue diamonds) in the 
box plots of Figs. 6.7-c and d. 

Both one-way Anova and Kruskal-Wallis h-test 
confirms the statistical significance of differences 
observed in different species corresponding to a very 
low p-value (p < 0.05). Hence, water depletion patterns 
are captured by the Gaussian fits parameters that are 
statistically significant.  
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Figure 6.6: ERT inverted change of water content ( ) δθ
between t1 and t4 in the first column and 1-D profile of  δθ
(black)  in the second column for different replicates or 
blocks within a species (rows) for: a) ryegrass (R), b) red 
clover (RC), c) alfalfa (A), d) cocksfoot (C), e) white clover 
(WC), f) ryegrass and white clover mixture (R+WC), g) 
cocksfoot and alfalfa mixture (C+A), h) ryegrass and red 
clover mixture (R+RC). The black solid lines are 1-D  δθ
median as a function of depth and red lines are Gaussian fits 
to positive changes of . δθ
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Looking at Figure 6.7-a and Table 6.3, we can observe 
that R and C have specific and contrasted behaviors as 
compared to the other species. R has a deep deletion 
depth, which is significantly different from all other 
species but C+A. On the opposite, C has a shallow 
depletion depth (Fig. 6.7-b), which discriminates from 
all other species except from A and R+RC (Table 6.3). 
When mixing is considered, we see that the depletion 
depth of R+WC cannot be differentiated from the 
depletion depths of its two contributing species R and 
WC. On the opposite, C+A, A and C are from different 
distributions, as if competition between species in the 
mix plot would differentiate the uptake depth of both 
species. In addition, root density profile in Figure 6.3 
shows that C is shallow (Z < 50 cm) while A is 
uniformly distributed at depths below 50 cm and hence 
their combination (C+A) might complement each other 
for water acquisition. The situation is different for the 
mix R+RC, which is not significantly different from 
RC but significantly different from R. It might reflect 
different species strategies under drought and 
competition. 

In terms of depletion extent, C and R have also 
contrasting behaviors while all the other species have 
relatively homogeneous depletion extents. C has a very 
narrow extent (Fig. 6.7-c), which differs from all other 
species but R+WC and RC.  On the opposite R has a 
broad extent (Fig. 6.7-c) significantly different than A, 
RC and R+WC. In terms of mixed crops, we could 
have expected that the extent of the combination differs 
from its contributing species but it is only the case 
between R and R+WC and between C and C+A. 

In Figure 6.7-d, we compare root percentiles, 
maximum rooting depth, replicates averaged mean 
depletion depth and maximum depletion extent of 
Gaussian fits. In general, the mean depletion depth 
takes place below or close to the 25th percentile of root 
distribution. We can hypothesize than plant 
transpiration in this condition is ensured by less than 

221 
 



25% of the root system. On the opposite, plants like A 
and C seem to be less able to use their deepest roots to 
extract water. Interestingly, we also observe that under 
combinations of crops, the uptake is systematically 
deeper than the root 25th percentile.  

Table 6.3: Tukey HSD statistics for Gaussian fit parameters. 
True means that the medians are significantly different. 
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Group1 Group2 
P-value 
for  σ

𝑍,δθ

Reject 
 σ

𝑍,δθ

P-value 
for 

 µ
𝑍,δθ

Reject 
 µ

𝑍,δθ

A C 0.001 TRUE 0.1369 FALSE 
A C+A 0.742 FALSE 0.0074 TRUE 
A R 0.6633 FALSE 0.001 TRUE 
A R+RC 0.9 FALSE 0.9 FALSE 
A R+WC 0.4146 FALSE 0.053 FALSE 
A RC 0.2536 FALSE 0.1447 FALSE 
A WC 0.9 FALSE 0.3009 FALSE 
C C+A 0.0158 TRUE 0.001 TRUE 
C R 0.001 TRUE 0.001 TRUE 
C R+RC 0.001 TRUE 0.0581 FALSE 
C R+WC 0.0514 FALSE 0.001 TRUE 
C RC 0.0967 FALSE 0.001 TRUE 
C WC 0.001 TRUE 0.0014 TRUE 

C+A R 0.0715 FALSE 0.2631 FALSE 
C+A R+RC 0.549 FALSE 0.0188 TRUE 
C+A R+WC 0.9 FALSE 0.9 FALSE 
C+A RC 0.9 FALSE 0.7294 FALSE 
C+A WC 0.3921 FALSE 0.4846 FALSE 

R R+RC 0.8563 FALSE 0.001 TRUE 
R R+WC 0.0223 TRUE 0.0448 TRUE 
R RC 0.0114 TRUE 0.0152 TRUE 
R WC 0.9 FALSE 0.0062 TRUE 

R+RC R+WC 0.2462 FALSE 0.1258 FALSE 
R+RC RC 0.1405 FALSE 0.3088 FALSE 
R+RC WC 0.9 FALSE 0.548 FALSE 
R+WC RC 0.9 FALSE 0.9 FALSE 
R+WC WC 0.1535 FALSE 0.9 FALSE 

RC WC 0.0841 FALSE 0.9 FALSE 



 

Figure 6.7: a) maximum depletion depth (  derived from µ
𝑍,δθ

Gaussian fit to negative changes of ) of a 1-D median of δθ
 as a function of plant species and depletion extent (δθ σ

𝑍,δθ
 

derived from Gaussian fit to negative changes of ) of a δθ
1-D median of  as a function of plant species. Box plot δθ
statistics of Gaussian fits: b) maximum depletion depth (

 derived from Gaussian fit to changes of ) of a 1-D µ
𝑍,δθ

δθ
median of  and c) depletion extent ( derived from δθ σ

𝑍,δθ
 

Gaussian fit to changes of ) of a 1-D median of . d)   δθ δθ
Percentile root profile for different species from soil trench 
data along with Gaussian fit parameters. 
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Figure 6.8: 1-D profile of θ in blue, normalized root δ
number density ( ) in black normalized to min/max of the 𝑟𝑛𝑑
blue curve and water content at time 1 (red). The different 
plot indicates plant species. 

In Figure 6.8, we compare 1-D median profile of 
temporal difference of water content ( ) with water δθ
availability at initial time ( ) and root distribution θ(𝑡1)
profiles.  We observe that the depletion pattern (in 
blue) is affected by both water content distribution 
(water availability) and root length distribution (root 
conductance), as predicted by physically based uptake 
models (Javaux et al. 2008; Couvreur et al. 2013). In 
general, the maximum uptake is not located at the 
surface where most roots are but were the water 
availability is low due to the uptake from the beginning 
of the season. Most of the uptake takes place below 30 
cm depth except for plants like Alfalfa A, ryegrass+red 
clover R+RC and cocksfoot C.  We also observe 
striking differences of depletion patterns between 
species with similar root distribution profiles, like 
between rye grass (R) and cocksfoot (C). While rye 
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grass (R) seems to be able to extract deeper soil water, 
C only takes up surface water. This might be due to the 
role of root conductance’s which allows rye grass (R) 
to be more efficient than cocksfoot (C).  Interestingly, 
we observe multimodal (double-peak) uptake profiles 
for combination of species (C+A and R+RC), 
potentially showing a niche distribution of water 
uptake.  

 

5.4 Summary and Conclusion 
 

The aim of the study was to demonstrate that ERT was 
able to discriminate plant ability to extract water under 
water deficit conditions. For this, we extended the 
previous high resolution ERT study of Rao et al. (2020) 
to include 5 different herbaceous species and 
combinations of them, and check whether intra species 
water depletion variability was lower than differences 
between species. 

One-dimensional profile of temporal changes of water 
content over 4 weeks ( ) was fitted with Gaussian δθ
function to retrieve maximum depletion depths ( ) µ

𝑍,δθ

and depletion zone extent ( ). Outliers in fitting σ
𝑍,δθ

parameters were removed based on ERT coverage and 
statistics. The filtered parameters showed good 
agreement within replicates and the differences 
between species was statistically significant (p < 
0.001).  

Based on the Gaussian fit parameters, we conclude that 
Ryegrass (R) is an efficient species in terms of 
combatting water deficit soil conditions as compared to 
Cocksfoot (C) despite having similar root density 
profile. While Cocksfoot (C) has mostly shallow roots, 
alfalfa (A) has comparatively deeper roots and hence 
there is less competition for water when C+A is 
combined. Therefore, Cocksfoot when mixed with 
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alfalfa (C+A) performs better in terms of water 
depletion as compared to Cocksfoot (C) alone. This is 
in consistent with multimodal uptake patterns observed 
in C+A and yield analysis (Koch et al. unpublished) 
where mixed cultivation resulted in better yield 
compared to monocultures. From 1-D profiles of θ(𝑡1)
,  and  indicates that uptake phenomenon in 𝑟𝑛𝑑 δθ
plants depends both on soil water availability and root 
density under drought condition.   
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5.5 Appendices 
 

Appendix A1: Coverage/ Sensitivity 
analysis 
In Figure 6.9, we show the 2-D sensitivity or coverage 
of the ERT measurement scheme (after data filtering) 
as a function of plant species and replicates or blocks. 
Below 1m depth, the sensitivity is quite poor (red 
dashed line) and up to 80 cm sensitivity is quite good 
(above 1.5). For some plots as indicated by red 
rhombus in Figure 6.5, the sensitivity drops below 1.5 
at depths as shallow as 50 cm due to fewer quadrupoles 
in the injection scheme and data filtering process. 
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Figure 6.9: Spatial distribution of ERT injection scheme 
sensitivity or coverage map (after filtering) for different 
replicates or blocks within a species (rows) for: a) ryegrass 
(R), b) red clover (RC), c) alfalfa (A), d) cocksfoot (C), e) 
white clover (WC), f) ryegrass and white clover mixture 
(R+WC), g) cocksfoot and alfalfa mixture (C+A), h) 
ryegrass and red clover mixture (R+RC). 
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Appendix A2: ERT Inversion parameters 
Table 6.4: ERT inversion quality parameters (rrms and chi2), no. of iterations in inversion, no. of 
quadrupoles in raw data    (Nqraw), and in filtered data (Nqf) as a function of the block, panel and time. 
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7 CONCLUSIONS AND 
PERSPECTIVES 

 

Root zone monitoring is a crucial tool for developing 
more resilient and sustainable agriculture. 
Characterizing root functions in situ are instrumental to 
understand nutrient and water absorption by plants and 
to develop efficient and reliable field root phenotyping 
supports for crop breeding. Recently, electrical imaging 
of root zone soil has been gaining wide attention 
among agronomists and soil scientists (Zhao et al. 
2019) because of its sensitivity to soil moisture and soil 
solution concentration, which are key elements for 
plant developments.  However, a quantitative 
understanding of electrical signatures of roots in 
electrical imaging is still somewhat missing as 
described in Chapter 1.  

Plant root systems have direct and indirect impacts on 
the electrical signature of vegetated soils. First, through 
its distinct electrical properties, roots directly affect the 
bulk electrical properties of the soil-root domain by its 
presence within the soil. Second, roots indirectly 
impact the electrical properties of soil through water 
depletion, nutrient uptake, and exudation, which all 
change the electrical signature of the soil/rhizosphere 
matrix. The main objective of this Ph.D. thesis was to 
quantify both the direct and indirect impact (with a 
focus on water) of the root system in geo-electric 
methods such as ERT or EIT.  

A first emphasis of the thesis was put on understanding 
the impact of roots in small scale rhizotron and pots by 
numerical experiments. Chapter 3 dealt with 
quantifying the impact of roots on pedophysical 
relations while incorporating both direct (root explicit 
electrical properties) and indirect (root water uptake 
patterns) in the forward calculation. Thanks to a unique 
process-based soil-plant numerical model, we could 
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simulate the water uptake in a realistic way and 
improve thereby our understanding of electrical 
signatures of root systems in soils. While in Chapter 4, 
we proved that bulk electrical properties at pot scale 
(under realistic conditions) contains root geometrical 
information. 

The second emphasis of the thesis was put on using 
ERT experiments to quantify plant root traits. We 
proposed a new methodology for quantifying root 
water uptake from a high-resolution ERT study on a 
field trial with 3 different herbaceous species and one 
mixture subject to two different treatments (control and 
water deficit) in Chapter 5. The methodology included 
numerical model to interpret field datasets in 
quantifying slight changes in water content due to root 
water uptake.  

The summary of the thesis along with perspective is 
shown as a flowchart in Figure 7.1. The implication of 
first emphasis leads to development of 
bio-petrophysical relation while the second emphasis 
leads to novel root phenotyping indices via geo-electric 
method (Fig. 7.1).  
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Figure 7.1: Flowchart for conclusion and perspective of the 
thesis 
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6.1 Bulk soil electrical properties vs root 
electrical properties 

 

Root electrical properties change with plant species, 
root type, and age. When roots invade soils, they affect 
the bulk soil electrical properties. Soil-root electrical 
contrast needs to be high enough to have a detectable 
root signature for root imaging applications using 
ERT/EIT. Our review in Chapter 2 shows that roots 
have good contrast with soils in magnitude part of 
conductivity below 15% of water content.  Also we 
saw in Chapter 2 that compared to soils and earth 
materials, whose phase part of electrical conductivity 
(polarization) range from 0 to 20 milliradians (Vanhala 
and Soininen 1995; Vanderborght et al. 2013), root 
segment exhibits a very large phase or polarization 
signature (0.2 to 0.6 radians). Although roots possess 
stronger polarization response than soil, at higher soil 
water content, they become unobservable due to soil 
dominance in magnitude part (Mary et al. 2016). We 
hypothesize from the literature review of Chapter 2 that 
lower water content (around 15%) in soil should be 
better for root imaging although too low water content 
translates to very dry soil where electrode contact 
issues might arise.  
Many studies reviewed in Chapter 2 show that root 
properties such as its mass can be derived from 
measuring electrical properties of a soil-root continuum 
such as electrical capacitance or resistivity. This also 
means roots can impact soil petrophysical relation 
leading to the wrong estimation of water content if they 
are no accounted for.  

The numerical model can help us in understanding the 
impact of roots in electrical measurements. To quantify 
the electrical response of roots in soils, a widely used 
circuit model is inadequate in capturing the complex 
geometry of root architecture and its electrical 
connection to the soil matrix. Further, electrical 
measurements on root segments (Section 2.8) indicate 
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that electrical properties of roots are root type, species, 
age, and radius dependent. Thus, we concluded in 
Chapter 2 that process-based explicit modeling of root 
structures is important to quantify and understand the 
electrical response of roots in the soil.  

Our next focus in Chapter 3 was to establish a 
process-based numerical model of a soil root 
continuum. For this, we had to a couple of existing 
electrical flow and water flow models to simulate a 
growing and transpiring maize root system in a 
three-dimensional thin rhizotron and forward ERT 
measurements. This is the first attempt in the scientific 
community to rigorously model a growing root system 
aimed at evaluating the impact of roots on the effective 
electrical conductivity of the soil-continuum.  

Thin rhizotron geometry allowed a higher density of 
roots within the soil medium maximizing root 
signatures and hence ideal condition to understand the 
impact of roots on petrophysical relations. Analysis of 
the σ distributions generated by simulated root water 
uptake and root system architecture showed a scale- 
and soil-dependent impact on the apparent 
petrophysical relationships. The uncertainty in the 
petrophysical relation of ~0.01 S m–1 predicted by the 
model has also been observed in some field ERT 
studies (Garré et al. 2011; Beff et al. 2013). In addition 
to measurement errors under field conditions, analysis 
of the σ distributions generated by simulated root water 
uptake and root system architecture shows that the 
presence of root segments might also be an additional 
reason why ERT-obtained petrophysical data 
sometimes have an uncertain spread around Archie’s 
curve.  

Even though we find that root water uptake has the 
main influence on effective electrical properties of soil, 
our 3-D ERT forward modeling demonstrated that for 
every 1% increase in root to sand volume ratio, there 
can be 13 % increase in uncertainty of effective 
electrical conductivity. This uncertainty is caused by 
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the presence of root segments while such uncertainty in 
loam medium is 0.7%. Understanding uncertainty in 
forward measurements is important as they can get 
amplified in the ERT inversion due to the ill-posed 
nature of the inverse problem. Hence quantification of 
forward uncertainty is important for estimation of 
uncertainty in ERT inversion. Further, we showed that 
root signatures in ERT measurements are stimulation 
scheme dependent with some quadrupoles being more 
sensitive to roots than others. To minimize the impact 
of roots on ERT measurements, we must carefully 
choose the stimulation scheme such that it gives the 
lowest root signature but they also mean lower 
sensitivity in the root region. However, for root 
imaging applications, we must choose quadrupoles that 
are most sensitive to root presence. Hence our model 
can serve as a tool for root imaging community for 
optimization of measurement scheme. Another 
interesting observation made in Chapter 3 was 
macroscopic electrical anisotropy observed in effective 
electrical conductivity in vertical and horizontal 
directions. This observation led us to the work of 
Chapter 4 where we investigated anisotropy of different 
root architectures to great detail using a similar 
modeling approach of Chapter 3.  

In Chapter 4, we tested the hypothesis that the 
frequency-dependent electrical signature of a vegetated 
soil pot is a function of the root system architecture and 
that electrical anisotropy was an appropriate index to 
capture root difference sin topology. In terms of 
methodology, we extended the work of Chapter 3 by 
working on 3-D pots rather than in thin rhizotron and 
by including polarization aspects. To quantify the 
differences in terms of root topology and geometry 
between root systems of different species, we 
established geometrical indices. For the first time, we 
show that the magnitude and phase part of electrical 
anisotropy (  and ) are highly correlated to various ξ δφ
geometrical indices of root systems with the correlation 
coefficient as high as 0.9. Within the scope of the 

243 
 



simulations run in Chapter 4, we conclude that 
electrical anisotropy (  and ) is a very promising δφ ξ
proxy for imaging root topology that can be measured 
non-invasively. 

 

6.2 Root properties  
 

Root water uptake is not the only function of root 
system architecture and soil water availability, but also 
of root hydraulics (Leitner et al. 2014; Meunier et al. 
2017). Hence, the dynamics of root water uptake is an 
indirect way of measuring plant functioning, in 
particular under drought. Since changes in water 
content due to root water uptake translates to changes 
in electrical properties of soil, Electrical Resistivity 
Tomography (ERT) is well suited to monitor soil water 
content evolution and thus soil water depletion patterns 
in situ.  

In chapter 5, we propose a new methodology for 
quantifying root functioning from a high-resolution 
ERT study on an intercropped field trial with 3 
different herbaceous species and one mixture subject to 
two different treatments (control and water deficit). 
The main aim of the study was to image the drought 
response and investigate the sensitivity of ERT in 
capturing root water uptake variability between 
species. For this purpose, we also conducted a 
mechanistic synthetic study that mimicked the actual 
experimental conditions. The synthetic and field 
studies showed that differences between plant uptake 
dynamics could better be characterized in water deficit 
conditions. Hence, plant phenotyping with ERT should 
ideally be realized under water deficit conditions. Also, 
changes in water content could be used as root 
phenotyping parameters in quantifying the water 
uptake ability of a plant in drought conditions. 
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In chapter 6, we used the methodology developed in 
chapter 5 to systematically analyze the response to the 
drought of 6 different crop forage species and their 
combinations in water deficit conditions.  We analyzed 
the results of a 2-D ERT temporal dataset in an 
agronomic field trial comparing the combination of 
forage crop species. The ERT derived changes in water 
content were fitted with Gaussian function to retrieve 
maximum depletion depths and depletion zone extent. 
The fitted parameters showed good agreement within 
replicates and the differences between inter-species 
were statistically significant (p < 0.001).  

We found Ryegrass (R) to be an efficient species in 
terms of combatting water deficit soil conditions as 
compared to Cocksfoot (C) despite having similar root 
density profile. Cocksfoot when mixed with alfalfa 
(C+A) performs better in terms of water depletion as 
compared to Cocksfoot (C) alone. This is consistent 
with yield analysis (Koch et al., unpublished) where 
mixed cultivation resulted in better yield compared to 
monocultures. From 1-D profiles of initial water 
content, root density and evolution of water depletion 
indicate that uptake phenomenon in plants depends 
both on soil water availability and root density under 
water-limited condition.  Thus, it is possible to 
compare species and perform root phenotyping using 
the method proposed in Chapter 6. 

 

6.3  Perspectives  
 

Due to the complexity of the root system architecture 
(RSA) embedded in the soil matrix, upscaling electrical 
properties measured at root segment scale to plant scale 
or to field scale is a challenging task (Mary et al. 2016; 
Weigand and Kemna 2017). Process-based multi-scale 
numerical modeling of a soil root continuum that we 
achieved in Chapter 3 and 4 upscales electrical 
properties from the root segment to a single plant scale 
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(rhizotron and pot). However, to further move from 
plant to field scale, explicitly representing root 
architecture (as in Chapter 3 or 4) in the computational 
domain demands a very high spatial resolution in the 
numerical grid, thus increasing computational time and 
memory consumption. Further research on upscaling 
mechanistic models of Chapter 3 to field-scale without 
explicit root representation is required. For instance, 
one subdomain in the field scale model could derive its 
electrical properties from plant scale models of Chapter 
4 eliminating the need for field-scale explicit root 
representation. The development of such a field-scale 
soil-root model will pave the way towards the 
development of bio-petrophysical relation in the rooted 
soil that takes root morphological features and its 
electrical properties into account. Such field-scale 
models will also help in understanding the electrical 
response of roots and optimizing geo-electric 
measurement scheme for maximizing root signatures. 
Further, the experimental validation of numerical 
results observed in Chapters 3 and 4 is yet to be 
achieved and hence the next step would be to perform 
several rhizotron and pot experiments to validate the 
model in terms of electrical response. Such 
experimental validation in rhizotron or pot scale will 
shed light on the importance of ignored parameters in 
the model such as soil cracks, root exudation, 
rhizosphere specific electrical properties, swelling and 
shrinking of roots leading to air gaps, and bad electrode 
contacts. We hypothesize that phenomena such as air 
gaps due to swelling and shrinking of roots will 
strongly influence the electrical signature by causing 
macroscopic anisotropy and provide an avenue to study 
gap dynamics around roots using the approach of 
Chapter 4 experimentally. Studying gap dynamics is 
important in terms of nutrient and water uptake in 
roots. The experimental extensions of ideas developed 
in Chapter 4 however require the design of suitable 
non-polarizing electrodes (Schwartz and Furman 2014) 
capable of measuring effective properties in at least 
two different directions and at low and high frequency. 
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The work contained in Chapters 5 and 6 could be 
extended to include EIT or polarization measurement at 
the field scale. Such an extension could allow us to 
differentiate root response from soil response at the 
field scale. Further, a machine learning algorithm 
should be used to extract plant-specific signatures in 
field data which could be more complex than just 
Gaussian fit parameters as characterized in Chapters 5 
and 6. Although, we got some success in using the 
K-nearest neighbor algorithm in Chapter 4 in 
classifying different root architecture, extending it to a 
real field-scale experiment is a very important logical 
extension.  
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